НАКОПИЧЕННЯ МЕДИЧНОГО РАДІОНУКЛІДУ ¹⁰³Рd ПРИ ВЗАЄМОДІЇ ПРОТОНІВ ТА ДЕЙТРОНІВ З РОЗПОДІЛЕНИМИ ІЗОТОПАМИ СРІБЛА. (ПРОПОЗИЦІЯ)

С. Карпусь, Є. Скакун ННЦ "Харківський фізико-технічний інститут" НАН України, Харків

¹⁰³Pd Decay radiation properties

Gammas from ¹⁰³ Pd				
Eγ (keV) Iγ (%)		Decay mode		
39.757	0.07	3		
53.285	0.00003	З		
62.41	0.00104	3		
241.88	0.0000005	3		
294.978	0.00280	3		
317.72	0.000015	3		
357.47	0.0221	З		
443.799	0.000015	3		
497.080	0.00396	3		

X-rays from ¹⁰³ Pd			
E (keV)	I (%)	Assignment	
20,074	22.4	Rh $K_{\alpha 2}$	
20,216	42.3	Rh $K_{\alpha 1}$	

Electron Energy (keV)	Intensity (%)	
16.528	9.521 %	
17.0	18.2 %	
36.336	71.237 %	
39.121	14.377 %	

Аналіз відомих шляхів накопичення ¹⁰³Pd

Reactions	E beam, MeV	Thick target yields MBq⋅µA ⁻¹ ⋅h ⁻¹	Authors		
¹⁰⁰ Ru(α,n)	24,9	0,96	Ye. Skakun and		
¹⁰¹ Ru(α,2n)	23	1,05	S. M. Qaim		
¹⁰¹ Ru(³ He,n)	33,6	0,05			
¹⁰² Ru(³ He,2n)	33,6	0,725			
¹⁰² Pd(n,γ)	0,025 eV	5.7	IAEA-TECDOC-1340		
¹⁰³ Rh(p,n)	20	10,61	S. Sudar et al.		
	39,5	10,7			
¹⁰³ Rh(d,2n)	40	31,4	Hermanne et al.		
¹⁰⁴ Pd(γ,n)	15	0.15	N.I. Aizatsky et al. A		
^{nat} Pd(p,xn) ¹⁰³ Ag→	37,3	50.1	Hermanne et al.		
^{nat} Pd(d,xn) ¹⁰³ Ag→	20,5	4.31	Hermanne et al.		
^{nat} Ag(p,x)	62	22,2	Fassbender et al.		
Чи існують більш ефективні шляхи накопичення ¹⁰³ Pd?					

The Production of ¹⁰³Pd via the ^{nat}Ag(p,x)¹⁰³Pd Nuclear Process

By M. Faßbender*, F. M. Nortier, I. W. Schroeder and T. N. van der Walt National Accelerator Centre, P.O. Box 72, RSA-Faure 7131, South Africa

			гворення супутніх радіонуклідів				Gammas from	
						··· J ···· ·· ··	Eg (keV)	Ig
			p+ ¹⁰⁷ Ag, d	+ ¹⁰⁷ Ag		-	406.17	13
			Radioactiv isotopes	e	T _{1/2}		429.64	13
			¹⁰⁹ Cd		462.6 d	1	450.97	28
			^{106m} Ag		8.26 d	-	5 11.842	88
Gam	mas from	¹⁰³ Ru	¹⁰⁵ Ag		41.29 d	-	616.174	2′
	(39.26 d)		¹⁰³ Ru		39.26 d		717.24	28
Eγ (keV)	Ιγ (%)	Decay	¹⁰² Rh		207 d		748.44	20
107.080	00.0	R-	^{102m} Rh		2.9 y		804.34	12
97.000	90.9	þ	¹⁰¹ Rh		3.3 y		824.79	1:
Gan	nmas from	^{101m} Rh	^{101m} Rh		4.34 d		1045.83	29
	(4.34 d)		¹⁰⁰ Pd		3.64 d		1128.00	1'
Eγ (keV) Ιγ (%)	Decay					1199.39	1'
306 857	81	s					1527.65	16
500.057	01	č						
							Gammas	fron
			Gammas	rom ¹⁰⁰ P	d (3.63 d)	1	Eg (keV)	
			Eγ (keV)	Ιγ (%)	Decay mode		63.98 3	+
			74.78	48	8	1	344.520	4
			84.02	52	3	1	443.37	1
			12(05	7.0		1	644.55	1.

^{106m}Ag (8.28 d) Decay (%) mode e+b+ .4 .2 e+b+ .2 e+b⁺ e+b+ .6 e+b+ .9 e+b+ .6 e+b+ .4 e+b+ .3 e+b+ .6 e+b+ .8 e+b+ .2 e+b+ .3 e+b+

Gammas fr	Gammas from ¹⁰⁵ Ag (41.29 d)			
Eg (keV)	lg (%)	Decay mode		
63.98 3	10.5	e+b⁺		
344.520	41	e+b+		
443.37	10.5	e+b⁺		
644.55	11.1	e+b+		

при взаємодії протонів з ¹⁰⁷Ag

Protons VS Deuterons for ¹⁰³Pd production

¹⁰³Pd VS ¹⁰⁰Pd

Activity prognosis of ¹⁰³Pd and ¹⁰⁰Pd VS Cooling time

Time, days	100Pd, MBq (p+107Ag)	103Pd, MBq (p+107Ag)	100Pd, MBq (d+107Ag)	103Pd, MBq (d+107Ag)	100Pd/103Pd, %
0	11.06	125	20.81	230	9
17	0.43436	62.5	0.81726	115	0.7
34	0.02064	32.55	0.03883	59.89	0.06

Висновки

При виконанні аналізу накопичення медичного ізотопу ¹⁰³Pd, показано основні етапи пошуку нових та оптимізація існуючих шляхів накопичення необхідних ізотопів з використанням методів ядерної фізики. Для прикладу, попередньо отримані розрахунки інтегральних виходів з товстої мішені при енергіях протонів та дейтронів до 200 МеВ при використанні бази даних TENDL-2015 комп'ютерного коду TALYS показали, що застосування в експериментах мішені срібла, збагаченої ізотопом ¹⁰⁷Ag, (¹⁰⁷Ag(d,xpyn)¹⁰³Pd) при енергії дейтронів E_d=110 MeB дає можливість перевищити рекордне значення в ~ 20 разів. Поєднання методу хімічної екстракції Pd з опромінених мішеней ¹⁰⁷Ag та витримки часу охолодження (¹⁰³Pd T^{1/2}=16.99 днів) дає змогу позбавитись супутніх небажаних радіоізотопів (¹⁰⁰Pd/¹⁰³Pd=0.7% для ¹⁰⁷Ag(p,xpyn) та ¹⁰⁷Ag(d,xpyn)).

Дякую за увагу!