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The Higgs mechanism: Generalities

The Higgs mechanism describes the spontaneous symmetry breaking of a
local symmetry. Let us introduce the Higgs mechanism with an example:
scalar QED; with the Lagrangian

4.2.3 General features of Goldstone bosons

To close this chapter, let us summarise the general features of Goldstone bosons:

• The Goldstone bosons are massless fields in one-to-one correspondence with the generators

of the coset-space G/H, where G is the (continuous) symmetry group of L and H is the

unbroken subgroup of the ground state. The Goldstone bosons can be viewed as the

coordinates of the coset-space G/H. They appear in the Lagrangian only via derivative

interactions.

• Using the e↵ective potential Ve↵ we have seen how to generalize the proof discussed in

the classical case leading to

me↵
ij (T ah�i)j = 0 , (4.52)

where h�i denote the ground-state of the theory. A further generalisation occurs taking

into account that h�i does not need to be the expectation value of a single elementary field

of the system. A spontaneous symmetry breaking occurs if any appropriate combination

of fields develops a non-trivial vacuum expectation value. In order to preserve Lorentz

invariance, this combination must be a Lorentz scalar and its vacuum expectation value

must be a constant. For example, in a theory with fermions (such as QCD), we can have

@Ve↵ [O(x)]

@O(x)

����
O(x)=v2

= 0 with O(x) =  ̄(x) (x) (4.53)

and v2 6= 0. If the original theory has a continuous symmetry G, and T av 6= 0, the

spectrum of the theory contains massless fields in one-to-one correspondence with the

generators of the coset-space G/H.

4.3 The Higgs Mechanism

4.3.1 Generalities

The Higgs mechanism describes the spontaneous symmetry breaking of a local symmetry. Let

us introduce the Higgs mechanism with an example: scalar QED; with the Lagrangian

L = �1

4
Fµ⌫F

µ⌫ + |Dµ�|2 � V (�) (4.54)

where

V (�) = �µ2�⇤�+
�

2
(�⇤�)2 (4.55)

and

Dµ = @µ + ieAµ . (4.56)

The transformation of the fields under U(1) are

�(x) ! ei↵(x) �(x) ,

Aµ ! Aµ � 1

e
@µ↵(x) .

(4.57)
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We find the ground state by minimizing the potential,We find the ground state by minimizing the potential,

@V

@�
= 0 () h�i = �0 =

µp
�
⌘ v . (4.58)

Let us change coordinates to describe excitations around this vacuum:

�(x) =

✓
v +

�(x)p
2

◆
exp

✓
i⇡(x)

v
p

2

◆
(4.59)

The potential depends on only one of the new fields (the radial component):

V (�) = V (�) =
�

2

"✓
v +

�p
2

◆2

� 2v2

#2

� �

4
v4 =

1

2
m2
��

2 + · · · (4.60)

with m2
� = 2�v2. The covariant derivative with the new fields reads

Dµ� =


@µ�p

2
+ i

✓
@µ⇡

v
p

2
+ eAµ

◆✓
v +

�p
2

◆�
e

i⇡(x)

v
p

2 (4.61)

which gives us the kinetic term

|Dµ�|2 =
1

2
(@µ�)2 +

✓
@µ⇡

v
p

2
+ eAµ

◆2✓
v +

�p
2

◆2

=
1

2
(@µ�)2 +

1

2
(@µ⇡)2 +

1

2
m2

AA2
µ + mA(@µ⇡)Aµ + �Lint .

(4.62)

The full Lagrangian is then

L = � 1

4
Fµ⌫F

µ⌫ +
1

2
(@µ�)2 +

1

2
(@µ⇡)2

� 1

2
m2
��

2 +
1

2
m2

AA2
µ + mA(@µ⇡)Aµ

+ �Lint

(4.63)

As can be seen, we have generated an e↵ective mass term for the photon field Aµ: the gauge

bosons have acquired a mass mA =
p

2ev. However, this mass term does not come alone: it

comes together with a bilinear mixing between Aµ and the Goldstone boson ⇡. The mixing is

of the form

k
= i

p
2ev(�ikµ) = mAkµ (4.64)

It is instructive to analyse as these two new terms contribute to modify the tree-level propagator

of Aµ. Beside the O(e0) term from the Maxwell Lagrangian, we now have two O(e2) corrections

connected to the two new quadratic terms in (4.63):

= + = im2
Agµ⌫ + (mAkµ)

i

k2
(�mAk⌫)

= im2
A

✓
gµ⌫ � kµk⌫

k2

◆ (4.65)
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As can be seen, we have generated an e↵ective mass term for the photon field Aµ: the gauge

bosons have acquired a mass mA =
p

2ev. However, this mass term does not come alone: it

comes together with a bilinear mixing between Aµ and the Goldstone boson ⇡. The mixing is

of the form

k
= i

p
2ev(�ikµ) = mAkµ (4.64)

It is instructive to analyse as these two new terms contribute to modify the tree-level propagator

of Aµ. Beside the O(e0) term from the Maxwell Lagrangian, we now have two O(e2) corrections
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We have generated an effective mass term for the photon field Aµ: the
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The Higgs mechanism: Generalities

Let’s analyze how these two new terms contribute to modify the tree-level
propagator of Aµ. Beside the O(e0) term from the Maxwell Lagrangian, we
now have two O(e2) corrections connected to the two new quadratic terms
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of gauge invariance and non-transverse photon propagator, here the
combined action of the effective mass term and the coupling to the
Goldstone boson ensures the transverse structure of the gauge boson
propagator.
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Generalization to non-Abelian theories

This signals that the theory is still gauge invariant. The gauge symmetry
has been broken spontaneously by a specific choice of the gauge for the
ground state (vacuum) of the theory.

Let us start from a very general theory with a non-Abelian gauge symmetry
group G and with a system of scalar fields ϕi. The Lagrangian is invariant
under the symmetry that transform the fields as

While a generic mass term for Aµ would have implied a complete breaking of gauge invariance

and non-transverse photon propagator, here the combined action of the e↵ective mass term

and the coupling to the Goldstone boson ensures the transverse structure of the gauge boson

propagator. This signals that the theory is still gauge invariant. The gauge symmetry has been

broken spontaneously by a specific choice of the gauge for the ground state (vacuum) of the

theory.

4.3.2 Generalization to non-Abelian theories

Let us start from a very general theory with a non-Abelian gauge symmetry group G and with

a system of scalar fields �i. The Lagrangian is invariant under the symmetry that transform

the fields as

�i ! (1 + i✏ata)ij �j , ��i = i✏ataij�j , (4.66)

we can promote it to a gauge symmetry by inserting the covariant derivative

Dµ� = (@µ � igAa
µt

a)� . (4.67)

Let us assume that
@Ve↵(�)

@�i

����
�i=�0

i

= 0 (4.68)

yields a ground state �0
i such that (ta�0) 6= 0 for some ta. Then the |Dµ�|2 term evaluated at

the ground state will generate

(Dµ�)†(Dµ�)
ground state�������! (�igAa
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a�0)†(�igAb
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1

2
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with

m2
ab = 2g2(ta�0)†(tb�0) = 2g2�†

0(t
atb)�0 (4.70)

where in the second equality we used (ta)† = ta (for a unitary transformation). This mass matrix

is positive semidefinite. In fact, any diagonal element, in any basis (including the eigenvalues),

has the form

m2
aa = 2g2|ta�0|2 � 0 (no sum over a) (4.71)

where it is explicit that the non-vanishing masses correspond to ta�0 6= 0.

As can easily be understood, the situation is perfectly analog to the Goldstone theorem,

although we deduce opposite conclusions concerning the existence of massless states: all the

gauge bosons associated to broken generators (ta�0 6= 0) acquire a mass, while all the gauge

bosons associated to generators that leave the vaccum invariant (ta�0 = 0) remain massless.

In other words, there is a one-to-one correspondence between i) the massive gauge bosons of

a spontaneously broken local symmetry G ! H and ii) the massless Goldstone bosons of a

spontaneously broken global symmetry G ! H. In both cases theese are associated to the

broken generators which span the G/H coset space.

Let us present a couple of examples:

1. Consider a scalar theory with an SU(2) gauge symmetry. The scalar field � in the

fundamental transforms as

�! ei↵ata� (4.72)
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aa = 2g2|ta�0|2 � 0 (no sum over a) (4.71)

where it is explicit that the non-vanishing masses correspond to ta�0 6= 0.

As can easily be understood, the situation is perfectly analog to the Goldstone theorem,

although we deduce opposite conclusions concerning the existence of massless states: all the

gauge bosons associated to broken generators (ta�0 6= 0) acquire a mass, while all the gauge

bosons associated to generators that leave the vaccum invariant (ta�0 = 0) remain massless.

In other words, there is a one-to-one correspondence between i) the massive gauge bosons of

a spontaneously broken local symmetry G ! H and ii) the massless Goldstone bosons of a

spontaneously broken global symmetry G ! H. In both cases theese are associated to the

broken generators which span the G/H coset space.

Let us present a couple of examples:

1. Consider a scalar theory with an SU(2) gauge symmetry. The scalar field � in the

fundamental transforms as

�! ei↵ata� (4.72)

88

with

While a generic mass term for Aµ would have implied a complete breaking of gauge invariance

and non-transverse photon propagator, here the combined action of the e↵ective mass term

and the coupling to the Goldstone boson ensures the transverse structure of the gauge boson

propagator. This signals that the theory is still gauge invariant. The gauge symmetry has been

broken spontaneously by a specific choice of the gauge for the ground state (vacuum) of the

theory.

4.3.2 Generalization to non-Abelian theories

Let us start from a very general theory with a non-Abelian gauge symmetry group G and with

a system of scalar fields �i. The Lagrangian is invariant under the symmetry that transform

the fields as

�i ! (1 + i✏ata)ij �j , ��i = i✏ataij�j , (4.66)

we can promote it to a gauge symmetry by inserting the covariant derivative

Dµ� = (@µ � igAa
µt

a)� . (4.67)

Let us assume that
@Ve↵(�)

@�i

����
�i=�0

i

= 0 (4.68)

yields a ground state �0
i such that (ta�0) 6= 0 for some ta. Then the |Dµ�|2 term evaluated at

the ground state will generate

(Dµ�)†(Dµ�)
ground state�������! (�igAa

µt
a�0)†(�igAb

µt
b�0) =

1

2
(mab)

2Aa
µA

b
µ (4.69)

with

m2
ab = 2g2(ta�0)†(tb�0) = 2g2�†

0(t
atb)�0 (4.70)

where in the second equality we used (ta)† = ta (for a unitary transformation). This mass matrix

is positive semidefinite. In fact, any diagonal element, in any basis (including the eigenvalues),

has the form

m2
aa = 2g2|ta�0|2 � 0 (no sum over a) (4.71)

where it is explicit that the non-vanishing masses correspond to ta�0 6= 0.

As can easily be understood, the situation is perfectly analog to the Goldstone theorem,

although we deduce opposite conclusions concerning the existence of massless states: all the

gauge bosons associated to broken generators (ta�0 6= 0) acquire a mass, while all the gauge

bosons associated to generators that leave the vaccum invariant (ta�0 = 0) remain massless.

In other words, there is a one-to-one correspondence between i) the massive gauge bosons of

a spontaneously broken local symmetry G ! H and ii) the massless Goldstone bosons of a

spontaneously broken global symmetry G ! H. In both cases theese are associated to the

broken generators which span the G/H coset space.

Let us present a couple of examples:

1. Consider a scalar theory with an SU(2) gauge symmetry. The scalar field � in the

fundamental transforms as

�! ei↵ata� (4.72)

88

(we have used (ta)† = ta).
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The mass matrix is positive semidefinite. In fact, any diagonal element, in
any basis (including the eigenvalues), has the form

While a generic mass term for Aµ would have implied a complete breaking of gauge invariance

and non-transverse photon propagator, here the combined action of the e↵ective mass term

and the coupling to the Goldstone boson ensures the transverse structure of the gauge boson

propagator. This signals that the theory is still gauge invariant. The gauge symmetry has been

broken spontaneously by a specific choice of the gauge for the ground state (vacuum) of the

theory.

4.3.2 Generalization to non-Abelian theories

Let us start from a very general theory with a non-Abelian gauge symmetry group G and with

a system of scalar fields �i. The Lagrangian is invariant under the symmetry that transform

the fields as

�i ! (1 + i✏ata)ij �j , ��i = i✏ataij�j , (4.66)

we can promote it to a gauge symmetry by inserting the covariant derivative

Dµ� = (@µ � igAa
µt

a)� . (4.67)

Let us assume that
@Ve↵(�)

@�i

����
�i=�0

i

= 0 (4.68)

yields a ground state �0
i such that (ta�0) 6= 0 for some ta. Then the |Dµ�|2 term evaluated at

the ground state will generate

(Dµ�)†(Dµ�)
ground state�������! (�igAa

µt
a�0)†(�igAb

µt
b�0) =

1

2
(mab)

2Aa
µA

b
µ (4.69)

with

m2
ab = 2g2(ta�0)†(tb�0) = 2g2�†

0(t
atb)�0 (4.70)

where in the second equality we used (ta)† = ta (for a unitary transformation). This mass matrix

is positive semidefinite. In fact, any diagonal element, in any basis (including the eigenvalues),

has the form

m2
aa = 2g2|ta�0|2 � 0 (no sum over a) (4.71)

where it is explicit that the non-vanishing masses correspond to ta�0 6= 0.

As can easily be understood, the situation is perfectly analog to the Goldstone theorem,

although we deduce opposite conclusions concerning the existence of massless states: all the

gauge bosons associated to broken generators (ta�0 6= 0) acquire a mass, while all the gauge

bosons associated to generators that leave the vaccum invariant (ta�0 = 0) remain massless.

In other words, there is a one-to-one correspondence between i) the massive gauge bosons of

a spontaneously broken local symmetry G ! H and ii) the massless Goldstone bosons of a

spontaneously broken global symmetry G ! H. In both cases theese are associated to the

broken generators which span the G/H coset space.

Let us present a couple of examples:

1. Consider a scalar theory with an SU(2) gauge symmetry. The scalar field � in the

fundamental transforms as

�! ei↵ata� (4.72)

88

where it is explicit that the non-vanishing masses correspond to (taϕ0) ̸= 0.

As can easily be understood, the situation is perfectly analog to the
Goldstone theorem, although we deduce opposite conclusions concerning
the existence of massless states: all the gauge bosons associated to broken
generators ((taϕ0) ̸= 0) acquire a mass, while all the gauge bosons
associated to generators that leave the vacuum invariant ((taϕ0) = 0)
remain massless.

SSB in QFT /Lecture Example 10 / 53



Generalization to non-Abelian theories

In other words, there is a one-to-one correspondence between
i) the massive gauge bosons of a spontaneously broken local symmetry
G→ H and
ii) the massless Goldstone bosons of a spontaneously broken global
symmetry G→ H.

In both cases these are associated to the broken generators which span the
G/H coset space.

Let’s present two examples.

1. Consider SU(2) symmetry in scalar theory. The scalar field transforms as

While a generic mass term for Aµ would have implied a complete breaking of gauge invariance

and non-transverse photon propagator, here the combined action of the e↵ective mass term

and the coupling to the Goldstone boson ensures the transverse structure of the gauge boson

propagator. This signals that the theory is still gauge invariant. The gauge symmetry has been

broken spontaneously by a specific choice of the gauge for the ground state (vacuum) of the

theory.

4.3.2 Generalization to non-Abelian theories

Let us start from a very general theory with a non-Abelian gauge symmetry group G and with

a system of scalar fields �i. The Lagrangian is invariant under the symmetry that transform

the fields as

�i ! (1 + i✏ata)ij �j , ��i = i✏ataij�j , (4.66)

we can promote it to a gauge symmetry by inserting the covariant derivative

Dµ� = (@µ � igAa
µt

a)� . (4.67)

Let us assume that
@Ve↵(�)

@�i

����
�i=�0

i

= 0 (4.68)

yields a ground state �0
i such that (ta�0) 6= 0 for some ta. Then the |Dµ�|2 term evaluated at

the ground state will generate

(Dµ�)†(Dµ�)
ground state�������! (�igAa

µt
a�0)†(�igAb

µt
b�0) =

1

2
(mab)

2Aa
µA

b
µ (4.69)

with

m2
ab = 2g2(ta�0)†(tb�0) = 2g2�†

0(t
atb)�0 (4.70)

where in the second equality we used (ta)† = ta (for a unitary transformation). This mass matrix

is positive semidefinite. In fact, any diagonal element, in any basis (including the eigenvalues),

has the form

m2
aa = 2g2|ta�0|2 � 0 (no sum over a) (4.71)

where it is explicit that the non-vanishing masses correspond to ta�0 6= 0.

As can easily be understood, the situation is perfectly analog to the Goldstone theorem,

although we deduce opposite conclusions concerning the existence of massless states: all the

gauge bosons associated to broken generators (ta�0 6= 0) acquire a mass, while all the gauge

bosons associated to generators that leave the vaccum invariant (ta�0 = 0) remain massless.

In other words, there is a one-to-one correspondence between i) the massive gauge bosons of

a spontaneously broken local symmetry G ! H and ii) the massless Goldstone bosons of a

spontaneously broken global symmetry G ! H. In both cases theese are associated to the

broken generators which span the G/H coset space.

Let us present a couple of examples:

1. Consider a scalar theory with an SU(2) gauge symmetry. The scalar field � in the

fundamental transforms as

�! ei↵ata� (4.72)

88ta = σa/2.
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We choose the vacuum configuration as

ϕ0 =
1√
2

(
0
v

)

hence the mass matrix becomes

where ta =
�a

2
are the generators of SU(2). Choosing the vacuum configuration

�0 =
1p
2

✓
0

v

◆
we find the mass matrix

m2
ab = g2

�
0 v

� �a

2

�b

2

✓
0

v

◆
(4.73)

Symmetrizing and using 1
2
{�a, �b} = �ab we obtain

m2
ab =

1

4
g2v2�ab (4.74)

We find three massive eigenstates of equal mass. This will be useful for the SM where we

also have 3 massive vectors.

2. Consider now a real field � = {�1, �2, �3} transforming into the adjoint representation of

SU(2). The covariant derivative is

Dµ�
a = @µ�

a + ig✏abcAb
µ�

c (4.75)

Choosing the vacuum configuration

�0 = {0, 0, v} (4.76)

we obtain

1

2
(Dµ�

a)(Dµ�a) ! g2

2
(✏ab3A

b
µ)(✏ac3A

c
µ)v2 =

g2

2
v2
⇥
(A1

µ)2 + (A2
µ)2
⇤

, (4.77)

where in the last equality we used the identity

X

a

✏ab3✏ac3 = �b1�c1 + �b2�c2 . (4.78)

In this case we obtain two massive eigenstates, i.e., m2
1 = m2

2 = g2v2 while m2
3 = 0,

because there is a residual U(1) symmetry associated to t3. Another way to see this is by

representing the scalar filed in the adjoint as a 2⇥ 2 real and traceless matrix (which has

indeed three independent components). In this alternative (but equivalent) notation, the

field transforms as

��ij = ✏a[ta, �]ij , (4.79)

and the covariant derivative reads

Dµ�ij = @µ�ij + i[ta, �]ijA
a
µ . (4.80)

The vacuum in (4.76) is equivalent to

�0 /
✓

v 0

0 �v

◆
(4.81)

and commutes with t3 = �3/2 but not with �2 and �1. Since the vacuum breaks 2

symmetries, two gauge boson acquire a non-vanishing mass.

89

Symmetrizing and using 1/2{σa, σb} = δab we get

where ta =
�a

2
are the generators of SU(2). Choosing the vacuum configuration

�0 =
1p
2

✓
0

v

◆
we find the mass matrix

m2
ab = g2

�
0 v

� �a

2

�b

2

✓
0

v

◆
(4.73)

Symmetrizing and using 1
2
{�a, �b} = �ab we obtain

m2
ab =

1

4
g2v2�ab (4.74)

We find three massive eigenstates of equal mass. This will be useful for the SM where we

also have 3 massive vectors.

2. Consider now a real field � = {�1, �2, �3} transforming into the adjoint representation of

SU(2). The covariant derivative is

Dµ�
a = @µ�

a + ig✏abcAb
µ�

c (4.75)

Choosing the vacuum configuration

�0 = {0, 0, v} (4.76)

we obtain

1

2
(Dµ�

a)(Dµ�a) ! g2

2
(✏ab3A

b
µ)(✏ac3A

c
µ)v2 =

g2

2
v2
⇥
(A1

µ)2 + (A2
µ)2
⇤

, (4.77)

where in the last equality we used the identity

X

a

✏ab3✏ac3 = �b1�c1 + �b2�c2 . (4.78)

In this case we obtain two massive eigenstates, i.e., m2
1 = m2

2 = g2v2 while m2
3 = 0,

because there is a residual U(1) symmetry associated to t3. Another way to see this is by

representing the scalar filed in the adjoint as a 2⇥ 2 real and traceless matrix (which has

indeed three independent components). In this alternative (but equivalent) notation, the

field transforms as

��ij = ✏a[ta, �]ij , (4.79)

and the covariant derivative reads

Dµ�ij = @µ�ij + i[ta, �]ijA
a
µ . (4.80)

The vacuum in (4.76) is equivalent to

�0 /
✓

v 0

0 �v

◆
(4.81)

and commutes with t3 = �3/2 but not with �2 and �1. Since the vacuum breaks 2

symmetries, two gauge boson acquire a non-vanishing mass.

89

We find three massive eigenstates of equal mass. This will be useful for the
SM where we also have 3 massive vectors.
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2. Consider now a real field ϕ = {ϕ1, ϕ2, ϕ3} transforming into the adjoint
representation of SU(2). The covariant derivative is

where ta =
�a

2
are the generators of SU(2). Choosing the vacuum configuration

�0 =
1p
2

✓
0

v

◆
we find the mass matrix

m2
ab = g2

�
0 v

� �a

2

�b

2

✓
0

v

◆
(4.73)

Symmetrizing and using 1
2
{�a, �b} = �ab we obtain

m2
ab =

1

4
g2v2�ab (4.74)

We find three massive eigenstates of equal mass. This will be useful for the SM where we

also have 3 massive vectors.

2. Consider now a real field � = {�1, �2, �3} transforming into the adjoint representation of

SU(2). The covariant derivative is

Dµ�
a = @µ�

a + ig✏abcAb
µ�

c (4.75)

Choosing the vacuum configuration

�0 = {0, 0, v} (4.76)

we obtain

1

2
(Dµ�

a)(Dµ�a) ! g2

2
(✏ab3A

b
µ)(✏ac3A

c
µ)v2 =

g2

2
v2
⇥
(A1

µ)2 + (A2
µ)2
⇤

, (4.77)

where in the last equality we used the identity

X

a

✏ab3✏ac3 = �b1�c1 + �b2�c2 . (4.78)

In this case we obtain two massive eigenstates, i.e., m2
1 = m2

2 = g2v2 while m2
3 = 0,

because there is a residual U(1) symmetry associated to t3. Another way to see this is by

representing the scalar filed in the adjoint as a 2⇥ 2 real and traceless matrix (which has

indeed three independent components). In this alternative (but equivalent) notation, the

field transforms as

��ij = ✏a[ta, �]ij , (4.79)

and the covariant derivative reads

Dµ�ij = @µ�ij + i[ta, �]ijA
a
µ . (4.80)

The vacuum in (4.76) is equivalent to

�0 /
✓

v 0

0 �v

◆
(4.81)

and commutes with t3 = �3/2 but not with �2 and �1. Since the vacuum breaks 2

symmetries, two gauge boson acquire a non-vanishing mass.

89

Choosing the vacuum configuration

where ta =
�a

2
are the generators of SU(2). Choosing the vacuum configuration

�0 =
1p
2

✓
0

v

◆
we find the mass matrix

m2
ab = g2

�
0 v

� �a

2

�b

2

✓
0

v

◆
(4.73)

Symmetrizing and using 1
2
{�a, �b} = �ab we obtain

m2
ab =

1

4
g2v2�ab (4.74)

We find three massive eigenstates of equal mass. This will be useful for the SM where we

also have 3 massive vectors.

2. Consider now a real field � = {�1, �2, �3} transforming into the adjoint representation of

SU(2). The covariant derivative is

Dµ�
a = @µ�

a + ig✏abcAb
µ�

c (4.75)

Choosing the vacuum configuration

�0 = {0, 0, v} (4.76)

we obtain

1

2
(Dµ�

a)(Dµ�a) ! g2

2
(✏ab3A

b
µ)(✏ac3A

c
µ)v2 =

g2

2
v2
⇥
(A1

µ)2 + (A2
µ)2
⇤

, (4.77)

where in the last equality we used the identity

X

a

✏ab3✏ac3 = �b1�c1 + �b2�c2 . (4.78)

In this case we obtain two massive eigenstates, i.e., m2
1 = m2

2 = g2v2 while m2
3 = 0,

because there is a residual U(1) symmetry associated to t3. Another way to see this is by

representing the scalar filed in the adjoint as a 2⇥ 2 real and traceless matrix (which has

indeed three independent components). In this alternative (but equivalent) notation, the

field transforms as

��ij = ✏a[ta, �]ij , (4.79)

and the covariant derivative reads

Dµ�ij = @µ�ij + i[ta, �]ijA
a
µ . (4.80)

The vacuum in (4.76) is equivalent to

�0 /
✓

v 0

0 �v

◆
(4.81)

and commutes with t3 = �3/2 but not with �2 and �1. Since the vacuum breaks 2

symmetries, two gauge boson acquire a non-vanishing mass.

89

we obtain

where ta =
�a

2
are the generators of SU(2). Choosing the vacuum configuration

�0 =
1p
2

✓
0

v

◆
we find the mass matrix

m2
ab = g2

�
0 v

� �a

2

�b

2

✓
0

v

◆
(4.73)

Symmetrizing and using 1
2
{�a, �b} = �ab we obtain

m2
ab =

1

4
g2v2�ab (4.74)

We find three massive eigenstates of equal mass. This will be useful for the SM where we

also have 3 massive vectors.

2. Consider now a real field � = {�1, �2, �3} transforming into the adjoint representation of

SU(2). The covariant derivative is

Dµ�
a = @µ�

a + ig✏abcAb
µ�

c (4.75)

Choosing the vacuum configuration

�0 = {0, 0, v} (4.76)

we obtain

1

2
(Dµ�

a)(Dµ�a) ! g2

2
(✏ab3A

b
µ)(✏ac3A

c
µ)v2 =

g2

2
v2
⇥
(A1

µ)2 + (A2
µ)2
⇤

, (4.77)

where in the last equality we used the identity

X

a

✏ab3✏ac3 = �b1�c1 + �b2�c2 . (4.78)

In this case we obtain two massive eigenstates, i.e., m2
1 = m2

2 = g2v2 while m2
3 = 0,

because there is a residual U(1) symmetry associated to t3. Another way to see this is by

representing the scalar filed in the adjoint as a 2⇥ 2 real and traceless matrix (which has

indeed three independent components). In this alternative (but equivalent) notation, the

field transforms as

��ij = ✏a[ta, �]ij , (4.79)

and the covariant derivative reads

Dµ�ij = @µ�ij + i[ta, �]ijA
a
µ . (4.80)

The vacuum in (4.76) is equivalent to

�0 /
✓

v 0

0 �v

◆
(4.81)

and commutes with t3 = �3/2 but not with �2 and �1. Since the vacuum breaks 2

symmetries, two gauge boson acquire a non-vanishing mass.

89

where in the last equality we used the identity

where ta =
�a

2
are the generators of SU(2). Choosing the vacuum configuration

�0 =
1p
2

✓
0

v

◆
we find the mass matrix

m2
ab = g2

�
0 v

� �a

2

�b

2

✓
0

v

◆
(4.73)

Symmetrizing and using 1
2
{�a, �b} = �ab we obtain

m2
ab =

1

4
g2v2�ab (4.74)

We find three massive eigenstates of equal mass. This will be useful for the SM where we

also have 3 massive vectors.

2. Consider now a real field � = {�1, �2, �3} transforming into the adjoint representation of

SU(2). The covariant derivative is

Dµ�
a = @µ�

a + ig✏abcAb
µ�

c (4.75)

Choosing the vacuum configuration

�0 = {0, 0, v} (4.76)

we obtain

1

2
(Dµ�

a)(Dµ�a) ! g2

2
(✏ab3A

b
µ)(✏ac3A

c
µ)v2 =

g2

2
v2
⇥
(A1

µ)2 + (A2
µ)2
⇤

, (4.77)

where in the last equality we used the identity

X

a

✏ab3✏ac3 = �b1�c1 + �b2�c2 . (4.78)

In this case we obtain two massive eigenstates, i.e., m2
1 = m2

2 = g2v2 while m2
3 = 0,

because there is a residual U(1) symmetry associated to t3. Another way to see this is by

representing the scalar filed in the adjoint as a 2⇥ 2 real and traceless matrix (which has

indeed three independent components). In this alternative (but equivalent) notation, the

field transforms as

��ij = ✏a[ta, �]ij , (4.79)

and the covariant derivative reads

Dµ�ij = @µ�ij + i[ta, �]ijA
a
µ . (4.80)

The vacuum in (4.76) is equivalent to

�0 /
✓

v 0

0 �v

◆
(4.81)

and commutes with t3 = �3/2 but not with �2 and �1. Since the vacuum breaks 2

symmetries, two gauge boson acquire a non-vanishing mass.
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In this case we obtain two massive eigenstates, i.e., m2
1 = m2

2 = g2v2 while
m2

3 = 0 since there is a residual U(1) symmetry associated with t3.

Another way to see this is by representing the scalar filed in the adjoint as
a 2× 2 real and traceless matrix (which has indeed three independent
components).

In this alternative (but equivalent) notation, the field transforms as

where ta =
�a

2
are the generators of SU(2). Choosing the vacuum configuration

�0 =
1p
2

✓
0

v

◆
we find the mass matrix

m2
ab = g2

�
0 v

� �a

2

�b

2

✓
0

v

◆
(4.73)

Symmetrizing and using 1
2
{�a, �b} = �ab we obtain

m2
ab =

1

4
g2v2�ab (4.74)

We find three massive eigenstates of equal mass. This will be useful for the SM where we

also have 3 massive vectors.

2. Consider now a real field � = {�1, �2, �3} transforming into the adjoint representation of

SU(2). The covariant derivative is

Dµ�
a = @µ�

a + ig✏abcAb
µ�

c (4.75)

Choosing the vacuum configuration

�0 = {0, 0, v} (4.76)

we obtain

1

2
(Dµ�

a)(Dµ�a) ! g2

2
(✏ab3A

b
µ)(✏ac3A

c
µ)v2 =

g2

2
v2
⇥
(A1

µ)2 + (A2
µ)2
⇤

, (4.77)

where in the last equality we used the identity

X

a

✏ab3✏ac3 = �b1�c1 + �b2�c2 . (4.78)

In this case we obtain two massive eigenstates, i.e., m2
1 = m2

2 = g2v2 while m2
3 = 0,

because there is a residual U(1) symmetry associated to t3. Another way to see this is by

representing the scalar filed in the adjoint as a 2⇥ 2 real and traceless matrix (which has

indeed three independent components). In this alternative (but equivalent) notation, the

field transforms as

��ij = ✏a[ta, �]ij , (4.79)

and the covariant derivative reads

Dµ�ij = @µ�ij + i[ta, �]ijA
a
µ . (4.80)

The vacuum in (4.76) is equivalent to

�0 /
✓

v 0

0 �v

◆
(4.81)

and commutes with t3 = �3/2 but not with �2 and �1. Since the vacuum breaks 2

symmetries, two gauge boson acquire a non-vanishing mass.

89

and the covariant derivative reads

where ta =
�a

2
are the generators of SU(2). Choosing the vacuum configuration

�0 =
1p
2

✓
0

v

◆
we find the mass matrix

m2
ab = g2

�
0 v

� �a

2

�b

2

✓
0

v

◆
(4.73)

Symmetrizing and using 1
2
{�a, �b} = �ab we obtain

m2
ab =

1

4
g2v2�ab (4.74)

We find three massive eigenstates of equal mass. This will be useful for the SM where we

also have 3 massive vectors.

2. Consider now a real field � = {�1, �2, �3} transforming into the adjoint representation of

SU(2). The covariant derivative is

Dµ�
a = @µ�

a + ig✏abcAb
µ�

c (4.75)

Choosing the vacuum configuration

�0 = {0, 0, v} (4.76)

we obtain

1

2
(Dµ�

a)(Dµ�a) ! g2

2
(✏ab3A

b
µ)(✏ac3A

c
µ)v2 =

g2

2
v2
⇥
(A1

µ)2 + (A2
µ)2
⇤

, (4.77)

where in the last equality we used the identity

X

a

✏ab3✏ac3 = �b1�c1 + �b2�c2 . (4.78)

In this case we obtain two massive eigenstates, i.e., m2
1 = m2

2 = g2v2 while m2
3 = 0,

because there is a residual U(1) symmetry associated to t3. Another way to see this is by

representing the scalar filed in the adjoint as a 2⇥ 2 real and traceless matrix (which has

indeed three independent components). In this alternative (but equivalent) notation, the

field transforms as

��ij = ✏a[ta, �]ij , (4.79)

and the covariant derivative reads

Dµ�ij = @µ�ij + i[ta, �]ijA
a
µ . (4.80)

The vacuum in (4.76) is equivalent to

�0 /
✓

v 0

0 �v

◆
(4.81)

and commutes with t3 = �3/2 but not with �2 and �1. Since the vacuum breaks 2

symmetries, two gauge boson acquire a non-vanishing mass.
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Generalization to non-Abelian theories

The chosen vacuum

where ta =
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2
{�a, �b} = �ab we obtain
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ab =

1

4
g2v2�ab (4.74)

We find three massive eigenstates of equal mass. This will be useful for the SM where we

also have 3 massive vectors.

2. Consider now a real field � = {�1, �2, �3} transforming into the adjoint representation of

SU(2). The covariant derivative is

Dµ�
a = @µ�

a + ig✏abcAb
µ�

c (4.75)

Choosing the vacuum configuration

�0 = {0, 0, v} (4.76)

we obtain

1

2
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a)(Dµ�a) ! g2

2
(✏ab3A

b
µ)(✏ac3A

c
µ)v2 =

g2

2
v2
⇥
(A1

µ)2 + (A2
µ)2
⇤

, (4.77)

where in the last equality we used the identity

X

a

✏ab3✏ac3 = �b1�c1 + �b2�c2 . (4.78)

In this case we obtain two massive eigenstates, i.e., m2
1 = m2

2 = g2v2 while m2
3 = 0,

because there is a residual U(1) symmetry associated to t3. Another way to see this is by

representing the scalar filed in the adjoint as a 2⇥ 2 real and traceless matrix (which has

indeed three independent components). In this alternative (but equivalent) notation, the

field transforms as

��ij = ✏a[ta, �]ij , (4.79)

and the covariant derivative reads

Dµ�ij = @µ�ij + i[ta, �]ijA
a
µ . (4.80)

The vacuum in (4.76) is equivalent to

�0 /
✓

v 0

0 �v

◆
(4.81)

and commutes with t3 = �3/2 but not with �2 and �1. Since the vacuum breaks 2

symmetries, two gauge boson acquire a non-vanishing mass.
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is equivalent to

where ta =
�a

2
are the generators of SU(2). Choosing the vacuum configuration

�0 =
1p
2

✓
0

v

◆
we find the mass matrix

m2
ab = g2

�
0 v

� �a

2

�b

2

✓
0

v

◆
(4.73)

Symmetrizing and using 1
2
{�a, �b} = �ab we obtain

m2
ab =

1

4
g2v2�ab (4.74)

We find three massive eigenstates of equal mass. This will be useful for the SM where we

also have 3 massive vectors.

2. Consider now a real field � = {�1, �2, �3} transforming into the adjoint representation of

SU(2). The covariant derivative is

Dµ�
a = @µ�

a + ig✏abcAb
µ�

c (4.75)

Choosing the vacuum configuration

�0 = {0, 0, v} (4.76)

we obtain

1

2
(Dµ�

a)(Dµ�a) ! g2

2
(✏ab3A

b
µ)(✏ac3A

c
µ)v2 =

g2

2
v2
⇥
(A1

µ)2 + (A2
µ)2
⇤

, (4.77)

where in the last equality we used the identity

X

a

✏ab3✏ac3 = �b1�c1 + �b2�c2 . (4.78)

In this case we obtain two massive eigenstates, i.e., m2
1 = m2

2 = g2v2 while m2
3 = 0,

because there is a residual U(1) symmetry associated to t3. Another way to see this is by

representing the scalar filed in the adjoint as a 2⇥ 2 real and traceless matrix (which has

indeed three independent components). In this alternative (but equivalent) notation, the

field transforms as

��ij = ✏a[ta, �]ij , (4.79)

and the covariant derivative reads

Dµ�ij = @µ�ij + i[ta, �]ijA
a
µ . (4.80)

The vacuum in (4.76) is equivalent to

�0 /
✓

v 0

0 �v

◆
(4.81)

and commutes with t3 = �3/2 but not with �2 and �1. Since the vacuum breaks 2

symmetries, two gauge boson acquire a non-vanishing mass.
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and commute with t3 = σ3/2 but not with σ1 and σ2.

Since the vacuum breaks 2 symmetries, two gauge boson acquire a
non-vanishing mass.
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Quantization of spontaneously broken gauge theories
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The Rξ gauge

Let us consider the complex scalar theory with Lagrangian

4.4 Quantization of spontaneously broken gauge theo-

ries

4.4.1 The R⇠ gauge

Let us consider the complex scalar theory with Lagrangian

L = �1

4
Fµ⌫F

µ⌫ + |Dµ�|2 � V (�) (4.82)

with Dµ = @µ + ieAµ and � =
1p
2
(�1 + i�2). The Lagrangian is invariant under a local U(1)

symmetry, whose infinitesimal action on the fields is

��1 = �↵(x)�2(x) ��2 = ↵(x)�1(x) �Aµ = �1

e
@µ↵(x) , (4.83)

where ↵(x) is a real function. Let us assume the (e↵ective) potential is minimised by h�i = v/
p

2

(along the lienes discussed at the beginning of this chapter) and let us choose the following

specific vacuum configuration: �1 = v, �2 = 0. As we have already seen, it is convenient to

redefine the fields as

�1(x) = v + h(x) , �2 = '(x) , (4.84)

such that the covariant derivative assumes the form

Dµ� =
1p
2

[@µh + i@µ'+ ieAµ(v + h) � eAµ'] . (4.85)

The Lagrangian written in terms of the new fields is

L = �1

4
Fµ⌫F

µ⌫ +
1

2
(@µh � eAµ')2 +

1

2
(@µ'+ eAµ(v + h))2 � V (h, ') (4.86)

Let’s proceed analysing the quantization of this Lagrangian. As usual, we start introducing the

generating functional

W [J ] /
Z

DA Dh D' ei
R

L[A,h,';J ] (4.87)

Following the Faddeev-Popov gauge fixing procedure, we insert the identity

1 =

Z
D↵ � [G(A↵)] det


�G(A↵)

�↵

�
(4.88)

where A↵ denotes the gauge transformed field Aµ ! A↵
µ. We then proceed changing variable

A ! A↵ in W [J ], taking into account that DA↵ = DA and, by gauge invariance, L[A] = L[A↵].

Finally, renaming A↵ into A, we obtain

W [J ] /
Z

D↵DA Dh D' ei
R

L[A,h,';J ] �[G(A)] det


�G(A)

�↵

�
(4.89)

We further choose the gauge fixing condition of the form

G(A) = !(x) (4.90)

90

with Dµ = ∂µ + ieAµ and ϕ = 1/
√
2 (ϕ1 + iϕ2). The Lagrangian is

invariant under U(1) symmetry, whose infinitesimal action on the fields is

4.4 Quantization of spontaneously broken gauge theo-

ries

4.4.1 The R⇠ gauge

Let us consider the complex scalar theory with Lagrangian

L = �1

4
Fµ⌫F

µ⌫ + |Dµ�|2 � V (�) (4.82)

with Dµ = @µ + ieAµ and � =
1p
2
(�1 + i�2). The Lagrangian is invariant under a local U(1)

symmetry, whose infinitesimal action on the fields is

��1 = �↵(x)�2(x) ��2 = ↵(x)�1(x) �Aµ = �1

e
@µ↵(x) , (4.83)

where ↵(x) is a real function. Let us assume the (e↵ective) potential is minimised by h�i = v/
p

2

(along the lienes discussed at the beginning of this chapter) and let us choose the following

specific vacuum configuration: �1 = v, �2 = 0. As we have already seen, it is convenient to

redefine the fields as

�1(x) = v + h(x) , �2 = '(x) , (4.84)

such that the covariant derivative assumes the form

Dµ� =
1p
2

[@µh + i@µ'+ ieAµ(v + h) � eAµ'] . (4.85)

The Lagrangian written in terms of the new fields is

L = �1

4
Fµ⌫F

µ⌫ +
1

2
(@µh � eAµ')2 +

1

2
(@µ'+ eAµ(v + h))2 � V (h, ') (4.86)

Let’s proceed analysing the quantization of this Lagrangian. As usual, we start introducing the

generating functional

W [J ] /
Z

DA Dh D' ei
R

L[A,h,';J ] (4.87)

Following the Faddeev-Popov gauge fixing procedure, we insert the identity

1 =

Z
D↵ � [G(A↵)] det


�G(A↵)

�↵

�
(4.88)

where A↵ denotes the gauge transformed field Aµ ! A↵
µ. We then proceed changing variable

A ! A↵ in W [J ], taking into account that DA↵ = DA and, by gauge invariance, L[A] = L[A↵].

Finally, renaming A↵ into A, we obtain

W [J ] /
Z

D↵DA Dh D' ei
R

L[A,h,';J ] �[G(A)] det


�G(A)

�↵

�
(4.89)

We further choose the gauge fixing condition of the form

G(A) = !(x) (4.90)

90

where α(x) is a real function. Let us assume the (effective) potential is
minimized by ⟨ϕ⟩ = v/

√
2, and we will use the following vacuum

configuration: ϕ1 = v, ϕ2 = 0.
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The Rξ gauge

As we have already seen, it is convenient to redefine the fields as

4.4 Quantization of spontaneously broken gauge theo-

ries

4.4.1 The R⇠ gauge

Let us consider the complex scalar theory with Lagrangian

L = �1

4
Fµ⌫F

µ⌫ + |Dµ�|2 � V (�) (4.82)

with Dµ = @µ + ieAµ and � =
1p
2
(�1 + i�2). The Lagrangian is invariant under a local U(1)

symmetry, whose infinitesimal action on the fields is

��1 = �↵(x)�2(x) ��2 = ↵(x)�1(x) �Aµ = �1

e
@µ↵(x) , (4.83)

where ↵(x) is a real function. Let us assume the (e↵ective) potential is minimised by h�i = v/
p

2

(along the lienes discussed at the beginning of this chapter) and let us choose the following

specific vacuum configuration: �1 = v, �2 = 0. As we have already seen, it is convenient to

redefine the fields as

�1(x) = v + h(x) , �2 = '(x) , (4.84)

such that the covariant derivative assumes the form

Dµ� =
1p
2

[@µh + i@µ'+ ieAµ(v + h) � eAµ'] . (4.85)

The Lagrangian written in terms of the new fields is

L = �1

4
Fµ⌫F

µ⌫ +
1

2
(@µh � eAµ')2 +

1

2
(@µ'+ eAµ(v + h))2 � V (h, ') (4.86)

Let’s proceed analysing the quantization of this Lagrangian. As usual, we start introducing the

generating functional

W [J ] /
Z

DA Dh D' ei
R

L[A,h,';J ] (4.87)

Following the Faddeev-Popov gauge fixing procedure, we insert the identity

1 =

Z
D↵ � [G(A↵)] det


�G(A↵)

�↵

�
(4.88)

where A↵ denotes the gauge transformed field Aµ ! A↵
µ. We then proceed changing variable

A ! A↵ in W [J ], taking into account that DA↵ = DA and, by gauge invariance, L[A] = L[A↵].

Finally, renaming A↵ into A, we obtain

W [J ] /
Z

D↵DA Dh D' ei
R

L[A,h,';J ] �[G(A)] det


�G(A)

�↵

�
(4.89)

We further choose the gauge fixing condition of the form

G(A) = !(x) (4.90)
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such that the covariant derivative assumes the form

4.4 Quantization of spontaneously broken gauge theo-

ries

4.4.1 The R⇠ gauge

Let us consider the complex scalar theory with Lagrangian

L = �1

4
Fµ⌫F

µ⌫ + |Dµ�|2 � V (�) (4.82)

with Dµ = @µ + ieAµ and � =
1p
2
(�1 + i�2). The Lagrangian is invariant under a local U(1)

symmetry, whose infinitesimal action on the fields is

��1 = �↵(x)�2(x) ��2 = ↵(x)�1(x) �Aµ = �1

e
@µ↵(x) , (4.83)

where ↵(x) is a real function. Let us assume the (e↵ective) potential is minimised by h�i = v/
p

2

(along the lienes discussed at the beginning of this chapter) and let us choose the following

specific vacuum configuration: �1 = v, �2 = 0. As we have already seen, it is convenient to

redefine the fields as

�1(x) = v + h(x) , �2 = '(x) , (4.84)

such that the covariant derivative assumes the form

Dµ� =
1p
2

[@µh + i@µ'+ ieAµ(v + h) � eAµ'] . (4.85)

The Lagrangian written in terms of the new fields is

L = �1

4
Fµ⌫F

µ⌫ +
1

2
(@µh � eAµ')2 +

1

2
(@µ'+ eAµ(v + h))2 � V (h, ') (4.86)

Let’s proceed analysing the quantization of this Lagrangian. As usual, we start introducing the

generating functional

W [J ] /
Z

DA Dh D' ei
R

L[A,h,';J ] (4.87)

Following the Faddeev-Popov gauge fixing procedure, we insert the identity

1 =

Z
D↵ � [G(A↵)] det


�G(A↵)

�↵

�
(4.88)

where A↵ denotes the gauge transformed field Aµ ! A↵
µ. We then proceed changing variable

A ! A↵ in W [J ], taking into account that DA↵ = DA and, by gauge invariance, L[A] = L[A↵].

Finally, renaming A↵ into A, we obtain

W [J ] /
Z

D↵DA Dh D' ei
R

L[A,h,';J ] �[G(A)] det


�G(A)

�↵

�
(4.89)

We further choose the gauge fixing condition of the form

G(A) = !(x) (4.90)
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The Lagrangian written in terms of the new fields is

4.4 Quantization of spontaneously broken gauge theo-

ries

4.4.1 The R⇠ gauge

Let us consider the complex scalar theory with Lagrangian

L = �1

4
Fµ⌫F

µ⌫ + |Dµ�|2 � V (�) (4.82)

with Dµ = @µ + ieAµ and � =
1p
2
(�1 + i�2). The Lagrangian is invariant under a local U(1)

symmetry, whose infinitesimal action on the fields is

��1 = �↵(x)�2(x) ��2 = ↵(x)�1(x) �Aµ = �1

e
@µ↵(x) , (4.83)

where ↵(x) is a real function. Let us assume the (e↵ective) potential is minimised by h�i = v/
p

2

(along the lienes discussed at the beginning of this chapter) and let us choose the following

specific vacuum configuration: �1 = v, �2 = 0. As we have already seen, it is convenient to

redefine the fields as

�1(x) = v + h(x) , �2 = '(x) , (4.84)

such that the covariant derivative assumes the form

Dµ� =
1p
2

[@µh + i@µ'+ ieAµ(v + h) � eAµ'] . (4.85)

The Lagrangian written in terms of the new fields is

L = �1

4
Fµ⌫F

µ⌫ +
1

2
(@µh � eAµ')2 +

1

2
(@µ'+ eAµ(v + h))2 � V (h, ') (4.86)

Let’s proceed analysing the quantization of this Lagrangian. As usual, we start introducing the

generating functional

W [J ] /
Z

DA Dh D' ei
R

L[A,h,';J ] (4.87)

Following the Faddeev-Popov gauge fixing procedure, we insert the identity

1 =

Z
D↵ � [G(A↵)] det


�G(A↵)

�↵

�
(4.88)

where A↵ denotes the gauge transformed field Aµ ! A↵
µ. We then proceed changing variable

A ! A↵ in W [J ], taking into account that DA↵ = DA and, by gauge invariance, L[A] = L[A↵].

Finally, renaming A↵ into A, we obtain

W [J ] /
Z

D↵DA Dh D' ei
R

L[A,h,';J ] �[G(A)] det


�G(A)

�↵

�
(4.89)

We further choose the gauge fixing condition of the form

G(A) = !(x) (4.90)

90
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The Rξ gauge

Let’s proceed analyzing the quantization of this Lagrangian. As usual, we
start introducing the generating functional

4.4 Quantization of spontaneously broken gauge theo-

ries

4.4.1 The R⇠ gauge

Let us consider the complex scalar theory with Lagrangian

L = �1

4
Fµ⌫F

µ⌫ + |Dµ�|2 � V (�) (4.82)

with Dµ = @µ + ieAµ and � =
1p
2
(�1 + i�2). The Lagrangian is invariant under a local U(1)

symmetry, whose infinitesimal action on the fields is

��1 = �↵(x)�2(x) ��2 = ↵(x)�1(x) �Aµ = �1

e
@µ↵(x) , (4.83)

where ↵(x) is a real function. Let us assume the (e↵ective) potential is minimised by h�i = v/
p

2

(along the lienes discussed at the beginning of this chapter) and let us choose the following

specific vacuum configuration: �1 = v, �2 = 0. As we have already seen, it is convenient to

redefine the fields as

�1(x) = v + h(x) , �2 = '(x) , (4.84)

such that the covariant derivative assumes the form

Dµ� =
1p
2

[@µh + i@µ'+ ieAµ(v + h) � eAµ'] . (4.85)

The Lagrangian written in terms of the new fields is

L = �1

4
Fµ⌫F

µ⌫ +
1

2
(@µh � eAµ')2 +

1

2
(@µ'+ eAµ(v + h))2 � V (h, ') (4.86)

Let’s proceed analysing the quantization of this Lagrangian. As usual, we start introducing the

generating functional

W [J ] /
Z

DA Dh D' ei
R

L[A,h,';J ] (4.87)

Following the Faddeev-Popov gauge fixing procedure, we insert the identity

1 =

Z
D↵ � [G(A↵)] det


�G(A↵)

�↵

�
(4.88)

where A↵ denotes the gauge transformed field Aµ ! A↵
µ. We then proceed changing variable

A ! A↵ in W [J ], taking into account that DA↵ = DA and, by gauge invariance, L[A] = L[A↵].

Finally, renaming A↵ into A, we obtain

W [J ] /
Z

D↵DA Dh D' ei
R

L[A,h,';J ] �[G(A)] det


�G(A)

�↵

�
(4.89)

We further choose the gauge fixing condition of the form

G(A) = !(x) (4.90)
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Following the Faddeev-Popov gauge fixing procedure, we insert the identity

4.4 Quantization of spontaneously broken gauge theo-

ries

4.4.1 The R⇠ gauge

Let us consider the complex scalar theory with Lagrangian

L = �1

4
Fµ⌫F

µ⌫ + |Dµ�|2 � V (�) (4.82)

with Dµ = @µ + ieAµ and � =
1p
2
(�1 + i�2). The Lagrangian is invariant under a local U(1)

symmetry, whose infinitesimal action on the fields is

��1 = �↵(x)�2(x) ��2 = ↵(x)�1(x) �Aµ = �1

e
@µ↵(x) , (4.83)

where ↵(x) is a real function. Let us assume the (e↵ective) potential is minimised by h�i = v/
p

2

(along the lienes discussed at the beginning of this chapter) and let us choose the following

specific vacuum configuration: �1 = v, �2 = 0. As we have already seen, it is convenient to

redefine the fields as

�1(x) = v + h(x) , �2 = '(x) , (4.84)

such that the covariant derivative assumes the form

Dµ� =
1p
2

[@µh + i@µ'+ ieAµ(v + h) � eAµ'] . (4.85)

The Lagrangian written in terms of the new fields is

L = �1

4
Fµ⌫F

µ⌫ +
1

2
(@µh � eAµ')2 +

1

2
(@µ'+ eAµ(v + h))2 � V (h, ') (4.86)

Let’s proceed analysing the quantization of this Lagrangian. As usual, we start introducing the

generating functional

W [J ] /
Z

DA Dh D' ei
R

L[A,h,';J ] (4.87)

Following the Faddeev-Popov gauge fixing procedure, we insert the identity

1 =

Z
D↵ � [G(A↵)] det


�G(A↵)

�↵

�
(4.88)

where A↵ denotes the gauge transformed field Aµ ! A↵
µ. We then proceed changing variable

A ! A↵ in W [J ], taking into account that DA↵ = DA and, by gauge invariance, L[A] = L[A↵].

Finally, renaming A↵ into A, we obtain

W [J ] /
Z

D↵DA Dh D' ei
R

L[A,h,';J ] �[G(A)] det


�G(A)

�↵

�
(4.89)

We further choose the gauge fixing condition of the form

G(A) = !(x) (4.90)
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Aα denotes the gauge transformed field Aµ → Aα
µ.

We proceed with changing the variables A→ Aα in W [J ] with taking into
account DA = DAα and the gauge invariance of the Lagrangian
L[A] → L[Aα].
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Renaming Aα to A we get

4.4 Quantization of spontaneously broken gauge theo-

ries
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where A↵ denotes the gauge transformed field Aµ ! A↵
µ. We then proceed changing variable

A ! A↵ in W [J ], taking into account that DA↵ = DA and, by gauge invariance, L[A] = L[A↵].
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We further choose the gauge fixing condition of the form

G(A) = !(x) (4.90)
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We further choose the gauge fixing condition of the form

G(A) = ω(x)

that is applied in the path integral with δ(G(A)− ω(x)). Then we can
integrate over ω(x) with a Gaussian weight
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So far, everything proceeds as in the case we already discussed in Chapter 1. However, since

the gauge-fixing function G is arbitrary, instead of choosing G(A) = @µA
µ, in this case it is

more convenient to choose the following gauge-fixing function

G(A) =
1p
⇠
(@µA

µ � ⇠ev') . (4.93)

As we shall see, this term has the advantage of eliminating the mixed term Aµ@µ' which appears
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the underlined terms cancel each other after integration by parts in the exponential term in
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where we see that we have generated an unphysical gauge(⇠)-dependent mass for the Goldstone

boson ':

m2
' = ⇠m2

A with m2
A = e2v2 . (4.97)

The fact that this mass is gauge-dependent signals us that the Goldstone boson has become a

fictitious field, which cannot be produced in physical processes.

With this choice of G(A) we also have ghosts appearing in our theory (despite we are in

Abelian case). Given the infinitesimal gauge transformations �Aµ = �1

e
@µ↵ and �' = ↵�1(x) =

↵(v + h(x)), it follows that
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=
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, (4.98)

which has a non-trivial dependence on h(x). The functional determinant can be accounted for

in the Lagrangian by introducing a pair of ghost fields. Re-absorbing an overall factor
1

e
, we

can write describe the functional determinant via

Lghost = c̄
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A
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to obtain

that is applied in the path integral via �[G(A)� !(x)], and we then integrate over !(x) with a
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where we see that we have generated an unphysical gauge(⇠)-dependent mass for the Goldstone

boson ':

m2
' = ⇠m2

A with m2
A = e2v2 . (4.97)

The fact that this mass is gauge-dependent signals us that the Goldstone boson has become a

fictitious field, which cannot be produced in physical processes.

With this choice of G(A) we also have ghosts appearing in our theory (despite we are in

Abelian case). Given the infinitesimal gauge transformations �Aµ = �1
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which has a non-trivial dependence on h(x). The functional determinant can be accounted for

in the Lagrangian by introducing a pair of ghost fields. Re-absorbing an overall factor
1

e
, we

can write describe the functional determinant via

Lghost = c̄
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Before, we proceeded with G(A) = ∂µA
µ. However, in the present case it

is a smart choice to be

that is applied in the path integral via �[G(A)� !(x)], and we then integrate over !(x) with a

(complex) Gaussian weight Z
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the gauge-fixing function G is arbitrary, instead of choosing G(A) = @µA
µ, in this case it is

more convenient to choose the following gauge-fixing function
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the underlined terms cancel each other after integration by parts in the exponential term in
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where we see that we have generated an unphysical gauge(⇠)-dependent mass for the Goldstone

boson ':

m2
' = ⇠m2

A with m2
A = e2v2 . (4.97)

The fact that this mass is gauge-dependent signals us that the Goldstone boson has become a

fictitious field, which cannot be produced in physical processes.

With this choice of G(A) we also have ghosts appearing in our theory (despite we are in

Abelian case). Given the infinitesimal gauge transformations �Aµ = �1

e
@µ↵ and �' = ↵�1(x) =

↵(v + h(x)), it follows that
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which has a non-trivial dependence on h(x). The functional determinant can be accounted for

in the Lagrangian by introducing a pair of ghost fields. Re-absorbing an overall factor
1

e
, we

can write describe the functional determinant via

Lghost = c̄
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As we shall see, this term has the advantage of eliminating the mixed term
Aµ∂µϕ in the quadratic part of the complete Lagrangian. This part has the
form

that is applied in the path integral via �[G(A)� !(x)], and we then integrate over !(x) with a
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D! e�

i
2
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So far, everything proceeds as in the case we already discussed in Chapter 1. However, since

the gauge-fixing function G is arbitrary, instead of choosing G(A) = @µA
µ, in this case it is

more convenient to choose the following gauge-fixing function

G(A) =
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⇠
(@µA
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in the quadratic part of (4.86). The latter has the form
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the underlined terms cancel each other after integration by parts in the exponential term in

(4.92). The quadratic part of the e↵ective Lagrangian after gauge fixing is then
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where we see that we have generated an unphysical gauge(⇠)-dependent mass for the Goldstone

boson ':

m2
' = ⇠m2

A with m2
A = e2v2 . (4.97)

The fact that this mass is gauge-dependent signals us that the Goldstone boson has become a

fictitious field, which cannot be produced in physical processes.

With this choice of G(A) we also have ghosts appearing in our theory (despite we are in

Abelian case). Given the infinitesimal gauge transformations �Aµ = �1

e
@µ↵ and �' = ↵�1(x) =

↵(v + h(x)), it follows that
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which has a non-trivial dependence on h(x). The functional determinant can be accounted for

in the Lagrangian by introducing a pair of ghost fields. Re-absorbing an overall factor
1
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, we

can write describe the functional determinant via
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
�@2 � ⇠m2

A

✓
1 +

h

v

◆�
c (4.99)

91

that is applied in the path integral via �[G(A)� !(x)], and we then integrate over !(x) with a

(complex) Gaussian weight Z
D! e�
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2
!2(x)�[G(A) � !(x)] (4.91)

obtaining
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So far, everything proceeds as in the case we already discussed in Chapter 1. However, since

the gauge-fixing function G is arbitrary, instead of choosing G(A) = @µA
µ, in this case it is

more convenient to choose the following gauge-fixing function

G(A) =
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As we shall see, this term has the advantage of eliminating the mixed term Aµ@µ' which appears
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the underlined terms cancel each other after integration by parts in the exponential term in

(4.92). The quadratic part of the e↵ective Lagrangian after gauge fixing is then
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where we see that we have generated an unphysical gauge(⇠)-dependent mass for the Goldstone

boson ':

m2
' = ⇠m2

A with m2
A = e2v2 . (4.97)

The fact that this mass is gauge-dependent signals us that the Goldstone boson has become a

fictitious field, which cannot be produced in physical processes.

With this choice of G(A) we also have ghosts appearing in our theory (despite we are in

Abelian case). Given the infinitesimal gauge transformations �Aµ = �1
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which has a non-trivial dependence on h(x). The functional determinant can be accounted for

in the Lagrangian by introducing a pair of ghost fields. Re-absorbing an overall factor
1
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can write describe the functional determinant via
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where we see that we have generated an unphysical gauge(⇠)-dependent mass for the Goldstone

boson ':

m2
' = ⇠m2

A with m2
A = e2v2 . (4.97)

The fact that this mass is gauge-dependent signals us that the Goldstone boson has become a

fictitious field, which cannot be produced in physical processes.

With this choice of G(A) we also have ghosts appearing in our theory (despite we are in
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the underlined terms cancel each other after integration by parts in the
exponential term of W [J ].
The quadratic part of the effective Lagrangian after gauge fixing is then
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So far, everything proceeds as in the case we already discussed in Chapter 1. However, since

the gauge-fixing function G is arbitrary, instead of choosing G(A) = @µA
µ, in this case it is

more convenient to choose the following gauge-fixing function

G(A) =
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where we see that we have generated an unphysical gauge(⇠)-dependent mass for the Goldstone

boson ':

m2
' = ⇠m2

A with m2
A = e2v2 . (4.97)

The fact that this mass is gauge-dependent signals us that the Goldstone boson has become a

fictitious field, which cannot be produced in physical processes.

With this choice of G(A) we also have ghosts appearing in our theory (despite we are in
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which has a non-trivial dependence on h(x). The functional determinant can be accounted for

in the Lagrangian by introducing a pair of ghost fields. Re-absorbing an overall factor
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that is applied in the path integral via �[G(A)� !(x)], and we then integrate over !(x) with a

(complex) Gaussian weight Z
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2
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So far, everything proceeds as in the case we already discussed in Chapter 1. However, since

the gauge-fixing function G is arbitrary, instead of choosing G(A) = @µA
µ, in this case it is

more convenient to choose the following gauge-fixing function

G(A) =
1p
⇠
(@µA
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As we shall see, this term has the advantage of eliminating the mixed term Aµ@µ' which appears
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where we see that we have generated an unphysical gauge(⇠)-dependent mass for the Goldstone

boson ':

m2
' = ⇠m2

A with m2
A = e2v2 . (4.97)

The fact that this mass is gauge-dependent signals us that the Goldstone boson has become a

fictitious field, which cannot be produced in physical processes.

With this choice of G(A) we also have ghosts appearing in our theory (despite we are in
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We have generated ξ-dependent unphysical mass of the Goldstone boson φ
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where we see that we have generated an unphysical gauge(⇠)-dependent mass for the Goldstone
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The fact that this mass is gauge-dependent signals us that the Goldstone boson has become a

fictitious field, which cannot be produced in physical processes.
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The mass is gauge-dependent hence the Goldstone boson is a fictitious
field, which cannot be produced in physical processes.
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The Rξ gauge

With the choice of G(A) we have ghosts in our theory. (Though we are in
Abelian theory, there still are ghosts!)

From the infinitesimal transformations δAµ = −1/e ∂µα,
δφ = αϕ1 = α(v + h(x)) it follows that
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where we see that we have generated an unphysical gauge(⇠)-dependent mass for the Goldstone

boson ':

m2
' = ⇠m2

A with m2
A = e2v2 . (4.97)

The fact that this mass is gauge-dependent signals us that the Goldstone boson has become a

fictitious field, which cannot be produced in physical processes.
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which has a non-trivial dependence on h(x). The functional determinant can be accounted for

in the Lagrangian by introducing a pair of ghost fields. Re-absorbing an overall factor
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with a non-trivial dependence on h(x).
The functional determinant can be accounted for in the Lagrangian by
introducing a pair of ghost fields. Re-absorbing an overall factor 1/e we can
write describe the functional determinant via
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where we see that we have generated an unphysical gauge(⇠)-dependent mass for the Goldstone

boson ':

m2
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A with m2
A = e2v2 . (4.97)

The fact that this mass is gauge-dependent signals us that the Goldstone boson has become a

fictitious field, which cannot be produced in physical processes.
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The Rξ gauge

From Lghost we have ξ-dependent mass for ghost fields m2
ghost = ξm2

A.

Note that, contrary to the non-Abelian case without spontaneous
symmetry breaking, here the ghost fields only couple to the massive scalar
field (the Higgs field) and not to the gauge boson(s).

As a last step, we can finally derive the propagators of the various fields
appearing in the theory. The quadratic part of the Lagrangian involving Aµ

is

which implies that the ghost fields have also a gauge(⇠)-dependent mass: m2
ghosts = ⇠m2

A. Note

that, contrary to the non-Abelian case without spontaneous symmetry breaking, here the ghost

fields only couple to the massive scalar field (the Higgs field) and not to the gauge boson(s).

As a last step, we can finally derive the propagators of the various fields appearing in the

theory. The quadratic part of the Lagrangian involving Aµ is
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In momentum space, the K̂µ⌫ operator assumes the form
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which implies the following structure for the propagator of Aµ in momentum space:
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The other propagators can be derived in a straightforward way, and the full list of propagators

is
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k
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As can be seen, the transverse components of the gauge field, and the massive scalar h (the

Higgs particle) acquire gauge-independent (physical) masses: mA and mh. On the other hand,

the unphysical components of A, the Goldstone bosons, and the ghosts all acquire the same

gauge-dependent (unphysical) mass m' =
p
⇠mA.

Three notable choices for ⇠ are worth to be discussed:

• Coulomb gauge [⇠ = 0]. In this case the Goldstone bosons are massless (as in in the

case of a global symmetry) and A has a transverse propagator.

• Feynman gauge [⇠ = 1]. In this case m' = mA, and the propagator of A has no terms

proportional to kµk⌫ .

• Unitary gauge [⇠ = 1]. In this case the Goldstone bosons and ghosts decouple, ac-

quiring an infinite mass (m' ! 1). The gauge field has the propagator expected for a

massive vector field with 3 independent polarizations:

hAµ(k)A⌫(�k)i|unitarygauge =
�i

k2 � m2
A
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In the momentum space, K̃µν assumes to have the form

which implies that the ghost fields have also a gauge(⇠)-dependent mass: m2
ghosts = ⇠m2

A. Note

that, contrary to the non-Abelian case without spontaneous symmetry breaking, here the ghost

fields only couple to the massive scalar field (the Higgs field) and not to the gauge boson(s).
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As can be seen, the transverse components of the gauge field, and the massive scalar h (the

Higgs particle) acquire gauge-independent (physical) masses: mA and mh. On the other hand,

the unphysical components of A, the Goldstone bosons, and the ghosts all acquire the same
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case of a global symmetry) and A has a transverse propagator.
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proportional to kµk⌫ .
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which implies that the ghost fields have also a gauge(⇠)-dependent mass: m2
ghosts = ⇠m2

A. Note

that, contrary to the non-Abelian case without spontaneous symmetry breaking, here the ghost

fields only couple to the massive scalar field (the Higgs field) and not to the gauge boson(s).

As a last step, we can finally derive the propagators of the various fields appearing in the

theory. The quadratic part of the Lagrangian involving Aµ is
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As can be seen, the transverse components of the gauge field, and the massive scalar h (the

Higgs particle) acquire gauge-independent (physical) masses: mA and mh. On the other hand,
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The Rξ gauge

It implies the following structure for the propagator of Aµ in momentum
space:

which implies that the ghost fields have also a gauge(⇠)-dependent mass: m2
ghosts = ⇠m2

A. Note

that, contrary to the non-Abelian case without spontaneous symmetry breaking, here the ghost

fields only couple to the massive scalar field (the Higgs field) and not to the gauge boson(s).
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The other propagators can be derived in a straightforward way, and the full list of propagators

is
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As can be seen, the transverse components of the gauge field, and the massive scalar h (the

Higgs particle) acquire gauge-independent (physical) masses: mA and mh. On the other hand,

the unphysical components of A, the Goldstone bosons, and the ghosts all acquire the same

gauge-dependent (unphysical) mass m' =
p
⇠mA.

Three notable choices for ⇠ are worth to be discussed:

• Coulomb gauge [⇠ = 0]. In this case the Goldstone bosons are massless (as in in the

case of a global symmetry) and A has a transverse propagator.

• Feynman gauge [⇠ = 1]. In this case m' = mA, and the propagator of A has no terms

proportional to kµk⌫ .

• Unitary gauge [⇠ = 1]. In this case the Goldstone bosons and ghosts decouple, ac-

quiring an infinite mass (m' ! 1). The gauge field has the propagator expected for a

massive vector field with 3 independent polarizations:

hAµ(k)A⌫(�k)i|unitarygauge =
�i

k2 � m2
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The other propagators can be derived in a straightforward way, and the full
list of propagators comes as follows:

which implies that the ghost fields have also a gauge(⇠)-dependent mass: m2
ghosts = ⇠m2

A. Note

that, contrary to the non-Abelian case without spontaneous symmetry breaking, here the ghost

fields only couple to the massive scalar field (the Higgs field) and not to the gauge boson(s).

As a last step, we can finally derive the propagators of the various fields appearing in the

theory. The quadratic part of the Lagrangian involving Aµ is
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As can be seen, the transverse components of the gauge field, and the massive scalar h (the

Higgs particle) acquire gauge-independent (physical) masses: mA and mh. On the other hand,

the unphysical components of A, the Goldstone bosons, and the ghosts all acquire the same

gauge-dependent (unphysical) mass m' =
p
⇠mA.

Three notable choices for ⇠ are worth to be discussed:

• Coulomb gauge [⇠ = 0]. In this case the Goldstone bosons are massless (as in in the

case of a global symmetry) and A has a transverse propagator.

• Feynman gauge [⇠ = 1]. In this case m' = mA, and the propagator of A has no terms

proportional to kµk⌫ .

• Unitary gauge [⇠ = 1]. In this case the Goldstone bosons and ghosts decouple, ac-

quiring an infinite mass (m' ! 1). The gauge field has the propagator expected for a

massive vector field with 3 independent polarizations:

hAµ(k)A⌫(�k)i|unitarygauge =
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which implies that the ghost fields have also a gauge(⇠)-dependent mass: m2
ghosts = ⇠m2

A. Note

that, contrary to the non-Abelian case without spontaneous symmetry breaking, here the ghost

fields only couple to the massive scalar field (the Higgs field) and not to the gauge boson(s).

As a last step, we can finally derive the propagators of the various fields appearing in the

theory. The quadratic part of the Lagrangian involving Aµ is
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The other propagators can be derived in a straightforward way, and the full list of propagators
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As can be seen, the transverse components of the gauge field, and the massive scalar h (the

Higgs particle) acquire gauge-independent (physical) masses: mA and mh. On the other hand,

the unphysical components of A, the Goldstone bosons, and the ghosts all acquire the same

gauge-dependent (unphysical) mass m' =
p
⇠mA.

Three notable choices for ⇠ are worth to be discussed:

• Coulomb gauge [⇠ = 0]. In this case the Goldstone bosons are massless (as in in the

case of a global symmetry) and A has a transverse propagator.

• Feynman gauge [⇠ = 1]. In this case m' = mA, and the propagator of A has no terms

proportional to kµk⌫ .

• Unitary gauge [⇠ = 1]. In this case the Goldstone bosons and ghosts decouple, ac-

quiring an infinite mass (m' ! 1). The gauge field has the propagator expected for a

massive vector field with 3 independent polarizations:

hAµ(k)A⌫(�k)i|unitarygauge =
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k2 � m2
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which implies that the ghost fields have also a gauge(⇠)-dependent mass: m2
ghosts = ⇠m2

A. Note

that, contrary to the non-Abelian case without spontaneous symmetry breaking, here the ghost

fields only couple to the massive scalar field (the Higgs field) and not to the gauge boson(s).

As a last step, we can finally derive the propagators of the various fields appearing in the

theory. The quadratic part of the Lagrangian involving Aµ is

L2A = �1

2
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A) +

✓
1 � 1

⇠

◆
@µ@⌫

�
A⌫ = �1

2
AµK̂

µ⌫A⌫ . (4.100)

In momentum space, the K̂µ⌫ operator assumes the form
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which implies the following structure for the propagator of Aµ in momentum space:
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The other propagators can be derived in a straightforward way, and the full list of propagators

is
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As can be seen, the transverse components of the gauge field, and the massive scalar h (the

Higgs particle) acquire gauge-independent (physical) masses: mA and mh. On the other hand,

the unphysical components of A, the Goldstone bosons, and the ghosts all acquire the same

gauge-dependent (unphysical) mass m' =
p
⇠mA.

Three notable choices for ⇠ are worth to be discussed:

• Coulomb gauge [⇠ = 0]. In this case the Goldstone bosons are massless (as in in the

case of a global symmetry) and A has a transverse propagator.

• Feynman gauge [⇠ = 1]. In this case m' = mA, and the propagator of A has no terms

proportional to kµk⌫ .

• Unitary gauge [⇠ = 1]. In this case the Goldstone bosons and ghosts decouple, ac-

quiring an infinite mass (m' ! 1). The gauge field has the propagator expected for a

massive vector field with 3 independent polarizations:

hAµ(k)A⌫(�k)i|unitarygauge =
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which implies that the ghost fields have also a gauge(⇠)-dependent mass: m2
ghosts = ⇠m2

A. Note

that, contrary to the non-Abelian case without spontaneous symmetry breaking, here the ghost

fields only couple to the massive scalar field (the Higgs field) and not to the gauge boson(s).

As a last step, we can finally derive the propagators of the various fields appearing in the

theory. The quadratic part of the Lagrangian involving Aµ is

L2A = �1
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which implies the following structure for the propagator of Aµ in momentum space:
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The other propagators can be derived in a straightforward way, and the full list of propagators

is
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As can be seen, the transverse components of the gauge field, and the massive scalar h (the

Higgs particle) acquire gauge-independent (physical) masses: mA and mh. On the other hand,

the unphysical components of A, the Goldstone bosons, and the ghosts all acquire the same

gauge-dependent (unphysical) mass m' =
p
⇠mA.

Three notable choices for ⇠ are worth to be discussed:

• Coulomb gauge [⇠ = 0]. In this case the Goldstone bosons are massless (as in in the

case of a global symmetry) and A has a transverse propagator.

• Feynman gauge [⇠ = 1]. In this case m' = mA, and the propagator of A has no terms

proportional to kµk⌫ .

• Unitary gauge [⇠ = 1]. In this case the Goldstone bosons and ghosts decouple, ac-

quiring an infinite mass (m' ! 1). The gauge field has the propagator expected for a

massive vector field with 3 independent polarizations:

hAµ(k)A⌫(�k)i|unitarygauge =
�i

k2 � m2
A

✓
gµ⌫ � kµk⌫

m2
A

◆
. (4.104)

92

SSB in QFT /Lecture Example 25 / 53



The Rξ gauge

As can be seen, the transverse components of the gauge field, and the
massive scalar h (the Higgs particle) acquire gauge-independent (physical)
masses: mA and mh. On the other hand, the unphysical components of A,
the Goldstone bosons and the ghosts all acquire the same gauge-dependent
(unphysical) mass mφ =

√
ξmA.

Three notable choices for ξ are worth to be discussed
Coulomb gauge ξ = 0. In this case the Goldstone bosons are
massless (as in in the case of a global symmetry) and A has a
transverse propagator.
Feynman gauge ξ = 1. In this case mφ = mA, and the propagator of
A has no terms proportional to kµkν .
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The Rξ gauge

Unitary gauge ξ = ∞. In this case the Goldstone bosons and ghosts
decouple, acquiring an infinite mass (mφ → ∞). The gauge field has
the propagator expected for a massive vector field with 3 independent
polarizations:

which implies that the ghost fields have also a gauge(⇠)-dependent mass: m2
ghosts = ⇠m2

A. Note

that, contrary to the non-Abelian case without spontaneous symmetry breaking, here the ghost

fields only couple to the massive scalar field (the Higgs field) and not to the gauge boson(s).

As a last step, we can finally derive the propagators of the various fields appearing in the

theory. The quadratic part of the Lagrangian involving Aµ is
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The other propagators can be derived in a straightforward way, and the full list of propagators

is
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As can be seen, the transverse components of the gauge field, and the massive scalar h (the

Higgs particle) acquire gauge-independent (physical) masses: mA and mh. On the other hand,

the unphysical components of A, the Goldstone bosons, and the ghosts all acquire the same

gauge-dependent (unphysical) mass m' =
p
⇠mA.

Three notable choices for ⇠ are worth to be discussed:

• Coulomb gauge [⇠ = 0]. In this case the Goldstone bosons are massless (as in in the

case of a global symmetry) and A has a transverse propagator.

• Feynman gauge [⇠ = 1]. In this case m' = mA, and the propagator of A has no terms

proportional to kµk⌫ .

• Unitary gauge [⇠ = 1]. In this case the Goldstone bosons and ghosts decouple, ac-

quiring an infinite mass (m' ! 1). The gauge field has the propagator expected for a

massive vector field with 3 independent polarizations:

hAµ(k)A⌫(�k)i|unitarygauge =
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92In the unitary gauge, the Goldstone boson is “absorbed” into the
longitudinal polarization of the gauge boson, that acquire mass: all the
degrees of freedom of the theory are described by the massive gauge field.

This gauge, which is quite useful to understand the spectrum of the theory,
should be used with care when doing loop calculations since it corresponds
to a singular limit of the Lagrangian.
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The Rξ gauge

In any other gauge (finite ξ) we have a “constrained” vector propagator,
reflecting the two physical polarizations of the gauge field in absence of
spontaneous symmetry breaking (this is particularly clear in the Coulomb
gauge) plus a Goldstone boson. In all cases the effective number of degrees
of freedom is conserved.

In other words, there is unavoidable gauge-dependent mixing between the
longitudinal polarization of the gauge boson and the Goldstone boson: in
physical processes, the combined effect due to the propagation of these two
modes, which are separately gauge-dependent, leads to the restoration of
gauge invariance.

Note also that the mass of the gauge field, mA ̸= 0, is a true physical
effect: there is no physical pole at k2 = 0 in the S matrix.
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A simplified model with chiral symmetry breaking

To better understand the interplay between the longitudinal polarization of
the gauge bosons and the Goldstone bosons, it is worth to analyze a
slightly more sophisticated model, which is also a good prototype to
understand the structure of weak interactions in the Standard Model.

Let us start again from a theory with U(1) local symmetry and a scalar
field. In addition to a complex scalar field ϕ we add a left-handed ψL

(charged under U(1) with the same charge as ϕ), and a right-handed ψR

uncharged under U(1).

Also we add a Yukawa type interaction between the scalar and the
fermions. Then the fermionic part of the action is

In the unitary gauge, the Goldstone boson is “absorbed” into the longitudinal polarization of

the gauge boson, that acquire mass: all the degrees of freedom of the theory are described by the

massive gauge field. This gauge, which is quite useful to understand the spectrum of the theory,

should be used with care when doing loop calculations since it corresponds to a singular limit

of the Lagrangian. In any other gauge (finite ⇠) we have a “constrained” vector propagator,

reflecting the two physical polarizations of the gauge field in absence of spontaneous symmetry

breaking (this is particularly clear in the Cuulomb gauge) plus a Goldstone boson. In all cases

the e↵ective number of degrees of freedom is conserved.

In other words, there is unavoidable gauge-dependent mixing between the longitudinal po-

larization of the gauge boson and the Goldstone boson: in physical processes, the combined

e↵ect due to the propagation of these two modes, which are separately gauge-dependent, leads

to the restoration of gauge invariance. Note also that the mass of the gauge field, mA 6= 0, is a

true physical e↵ect: there is no physical pole at k2 = 0 in the S matrix.

4.4.2 A simplified model with chiral symmetry breaking

In order to better understand the interplay between the longitudinal polarization of the gauge

bosons and the Goldstone bosons, it is worth to analyse a slightly more sophisticated model,

which is also a good prototype to understand the structure of weak interactions in the Standard

Model. Let us start again from a theory with U(1) local symmetry and a scalar field, as in

(4.82). In addition to the (complex) scalar field �, we add a left-handed fermion  L, charged

under U(1), with the same charge of �, and a right-handed fermion  R not charged under U(1).

We also introduce a renormalizable (Yukawa-type) interaction among the fermion fields and the

scalar. The part of the Lagrangian describing the fermion fields is

�Lf =  ̄L(i /D) L +  ̄R(i/@) R � �f ( ̄L� R +  ̄R�
⇤ L) (4.105)

with Dµ = @µ + ieAµ, and the gauge transformations of scalar and fermion fields are

 L ! ei↵(x) L �! ei↵(x)�  R !  R . (4.106)

In principle,  R and  L are two independent massless spinor fields (2-component each), with

di↵erent gauge and Lorentz transformation properties. However, after spontaneous symmetry

breaking, they can be viewed as the two chiralities of a unique (4-component) massive Dirac

fermion  . Indeed, writing

 L = PL ,  R = PR , PL,R =

✓
1 ⌥ �5

2

◆
, (4.107)

it is easy to realise that, after � acquire a vacuum expectation value, the Yukawa-type interac-

tion in (4.105) leads to a Dirac mass term mf  ̄ , with

mf = �f
vp
2

. (4.108)

Also the gauge field Aµ acquire a mass mA = ev, and the coupling of the fermion to the gauge

field is

�L �A = �e ̄L�
µ LAµ = �e ̄�µPL Aµ (4.109)
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Here Dµ = ∂µ + ieAµ.
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A simplified model with chiral symmetry breaking

The gauge transformations of scalar fermion fields are

In the unitary gauge, the Goldstone boson is “absorbed” into the longitudinal polarization of

the gauge boson, that acquire mass: all the degrees of freedom of the theory are described by the

massive gauge field. This gauge, which is quite useful to understand the spectrum of the theory,

should be used with care when doing loop calculations since it corresponds to a singular limit

of the Lagrangian. In any other gauge (finite ⇠) we have a “constrained” vector propagator,

reflecting the two physical polarizations of the gauge field in absence of spontaneous symmetry

breaking (this is particularly clear in the Cuulomb gauge) plus a Goldstone boson. In all cases

the e↵ective number of degrees of freedom is conserved.

In other words, there is unavoidable gauge-dependent mixing between the longitudinal po-

larization of the gauge boson and the Goldstone boson: in physical processes, the combined

e↵ect due to the propagation of these two modes, which are separately gauge-dependent, leads

to the restoration of gauge invariance. Note also that the mass of the gauge field, mA 6= 0, is a

true physical e↵ect: there is no physical pole at k2 = 0 in the S matrix.

4.4.2 A simplified model with chiral symmetry breaking

In order to better understand the interplay between the longitudinal polarization of the gauge

bosons and the Goldstone bosons, it is worth to analyse a slightly more sophisticated model,

which is also a good prototype to understand the structure of weak interactions in the Standard

Model. Let us start again from a theory with U(1) local symmetry and a scalar field, as in

(4.82). In addition to the (complex) scalar field �, we add a left-handed fermion  L, charged

under U(1), with the same charge of �, and a right-handed fermion  R not charged under U(1).

We also introduce a renormalizable (Yukawa-type) interaction among the fermion fields and the

scalar. The part of the Lagrangian describing the fermion fields is

�Lf =  ̄L(i /D) L +  ̄R(i/@) R � �f ( ̄L� R +  ̄R�
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we see the appearance the Dirac mass term mf ψ̄ψ after the spontaneous
symmetry breaking and setting the V.E.V. of ϕ.
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fermions ψ are
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Figure 4.1: tree-level diagrams contributing to   !   scattering according to the Lagrangian

in Eq. (4.105).

Finally, the couplings of the Goldstone boson ' and the massive scalar h to the fermions  are

�L'/h� = � �fp
2
[ ̄L(�1 + i�2) R +  ̄R(�1 � i�2) L]
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2
[( ̄L R +  ̄R L)(v + h) + i( ̄L R �  ̄R L)']

= � �fp
2
[ ̄ (v + h) + i ̄�5 ']

(4.110)

We are now interested to compute the scattering   !   in this theory. We will do the

calculation a the tree level, in a generic R⇠ gauge. The ghosts do not appear in this process

until the one-loop level and the only contributing diagrams are shown in Fig. 4.1

Analysing each diagram (starting from the right), we deduce the following conclusions:

• The h-boson exchange diagram is ⇠-independent. As a result, the ⇠-dependence must

cancel between the Goldstone-boson and the gauge-boson exchange diagrams.

• The Goldstone boson exchange diagrams generates the following contribution to the am-

plitude

iM' =

✓
�fp

2

◆2

ū(p0)�5u(p)
i

q2 � ⇠m2
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ū(k0)�5u(k) (4.111)

• The gauge boson exchange diagram leads to

iMA = (�ie)2ū(p0)�µPLu(p)
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We can rewrite the gauge boson propagator as
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The first term is ⇠ independent, and is the result we would have obtained in the unitary

gauge. The second term can be simplified after contracting the spinors, via the identity

qµū(p0)�µPLu(p) =
1

2
ū(p0)[(/p � /p

0) � (/p � /p
0)�5]u(p)

=
1

2
ū(p0)[/p

0�5 + �5
/p]u(p) = mf ū(p0)�5u(p) (4.114)
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iMA = (�ie)2ū(p0)�µPLu(p)
�i

q2 � m2
A

✓
gµ⌫ � qµq⌫

q2 � ⇠m2
A

(1 � ⇠)

◆
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We are now interested to compute the scattering ψψ → ψψ in this theory.
We will do the calculation a the tree level, in a generic Rξ gauge. The
ghosts do not appear in this process until the one-loop level and the only
contributing diagrams are
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Figure 4.1: tree-level diagrams contributing to   !   scattering according to the Lagrangian

in Eq. (4.105).
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calculation a the tree level, in a generic R⇠ gauge. The ghosts do not appear in this process
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ū(k0)�⌫PLu(k) (4.112)

We can rewrite the gauge boson propagator as

�i

q2 � m2
A

✓
gµ⌫ � qµq⌫

m2
A

+ qµq⌫


1

m2
A

� 1

q2 � ⇠m2
A

(1 � ⇠)

�◆

=
�i

q2 � m2
A

✓
gµ⌫ � qµq⌫

m2
A

◆
+

�i

q2 � ⇠m2
A

✓
qµq⌫

m2
A

◆
(4.113)
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One may analyze diagrams to make the following conclusions.
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So, analysing each diagram (starting from the right), we deduce that
The h-boson exchange diagram is ξ-independent. As a result, the
ξ-dependence must cancel between the Goldstone-boson and the
gauge-boson exchange diagrams.
The Goldstone boson exchange diagrams generates the following
contribution to the amplitude
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Figure 4.1: tree-level diagrams contributing to   !   scattering according to the Lagrangian

in Eq. (4.105).
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calculation a the tree level, in a generic R⇠ gauge. The ghosts do not appear in this process
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iMA = (�ie)2ū(p0)�µPLu(p)
�i

q2 � m2
A

✓
gµ⌫ � qµq⌫

q2 � ⇠m2
A

(1 � ⇠)

◆
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The gauge boson exchange diagram leads to
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in Eq. (4.105).
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We are now interested to compute the scattering   !   in this theory. We will do the

calculation a the tree level, in a generic R⇠ gauge. The ghosts do not appear in this process

until the one-loop level and the only contributing diagrams are shown in Fig. 4.1
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The first term is ⇠ independent, and is the result we would have obtained in the unitary
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qµū(p0)�µPLu(p) =
1

2
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94q = p− p′ = k − k′ is the momentum transfer.
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The explicit expressions for mA and mf we find that the term depending
on ξ in iMA is

where q = p � p0 = k0 � k is the momentum transfer. Inserting the explicit expressions

for mA and mf we find that the term depending on ⇠ in iMA is
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that precisely cancels the Goldstone boson exchange diagram.

This result nicely illustrate the role of the Goldstone boson in ensuring a gauge-invariant result.

4.4.3 The Goldstone boson equivalence theorem

The results discussed in the previous section can easily be generalised to the case of non-Abelian

gauge symmetries: the Goldstone bosons associated to the broken generators are “eaten” by

the corresponding gauge field, that acquire a non-vanishing mass. What we will show in this

section is that, despite we can get rid of the Goldstone bosons in the unitary gauge, at high

energies (i.e. at energies well above the masses of the gauge fields), the amplitude for emission

or absorption of a longitudinally polarized massive gauge boson becomes equal to the amplitude

for the emission or absorption of the corresponding Goldstone boson. In other words, at high

energies we restore a system where, for each broken generator, two degrees of freedom are

associated to the transverse gauge boson and the third one is associated to the the Goldstone

boson field.

To derive this result, known as the Goldstone boson equivalence theorem, it is worth to

revisit the Goldstone boson theorem and the Higgs mechanism using a di↵erent (more general)

language. Let us first consider a Lagrangian L0 with a global non-abelian symmetry G. The

infinitesimal transformation of L0 under G is

�GL0 = @µ↵
a Ja

µ , (4.116)

and leads to a conserved current @µJ
a
µ = 0. If we promote G to become a local symmetry,

adding an appropriate set of gauge bosons (Aa
µ), the Lagrangian of the theory is modified as

follows

L0 ! L = L0 � gAa
µJ

a
µ + O(A2)| {z }

kinetic terms, . . .

(4.117)

Because of the Ward Identity of the global symmetry, we have

@µ hf | Ja
µ |ii = 0 (4.118)

where |ii and |ji represent physical on-shell states. If the symmetry is spontaneously broken,

i.e. if T a |0i 6= 0 for some generators T a of G, the current Ja
µ has the right quantum numbers to

create Goldstone bosons |⇡ki from the vacuum state. Lorentz invariance implies the following

general decomposition of the h0| Ja
µ |⇡ki matrix element:

h0| Ja
µ(x) |⇡k(p)i = �ipµF

a
k e�ip·x . (4.119)

By construction, F a
k can be non vanishing only if T a |0i 6= 0, hence a non-vanishing F a

k implies

that we have a spontaneous symmetry breaking.

To better understand the implications of (4.119), we note following two observations:
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that precisely cancels the Goldstone boson exchange diagram.

This result nicely illustrate the role of the Goldstone boson in ensuring a
gauge-invariant result.

SSB in QFT /Lecture Example 35 / 53



The Goldstone boson equivalence theorem

The results we got in before can easily be generalized to the case of
non-Abelian gauge symmetries: the Goldstone bosons associated to the
broken generators are “eaten” by the corresponding gauge field, that
acquire a non-vanishing mass.

What we will show in this section is that, despite we can get rid of the
Goldstone bosons in the unitary gauge, at high energies (i.e. at energies
well above the masses of the gauge fields), the amplitude for emission or
absorption of a longitudinally polarized massive gauge boson becomes equal
to the amplitude for the emission or absorption of the corresponding
Goldstone boson.

In other words, at high energies we restore a system where, for each broken
generator, two degrees of freedom are associated to the transverse gauge
boson and the third one is associated to the the Goldstone boson field.
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The Goldstone boson equivalence theorem

To derive this result, known as the Goldstone boson equivalence theorem, it
is worth to revisit the Goldstone boson theorem and the Higgs mechanism
using a different (more general) language.

Let us first consider a Lagrangian L0 with a global non-abelian symmetry
G. The infinitesimal transformation of L0 under G is
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|i⟩ and |j⟩ are physical on-shell states.

If the symmetry is spontaneously broken, that is T a|0⟩ ≠ 0 for some
generators T a of group G, the current Ja

µ has the right quantum numbers
to create Goldstone bosons |πk⟩ from the vacuum state.

Lorentz invariance implies the following general decomposition of the
⟨0|Ja

µ |πk⟩ matrix element

where q = p � p0 = k0 � k is the momentum transfer. Inserting the explicit expressions

for mA and mf we find that the term depending on ⇠ in iMA is
✓
�fp

2

◆2

ū(p0)�5u(p)
�i

q2 � ⇠m2
A

ū(k0)�5u(k) (4.115)

that precisely cancels the Goldstone boson exchange diagram.

This result nicely illustrate the role of the Goldstone boson in ensuring a gauge-invariant result.

4.4.3 The Goldstone boson equivalence theorem

The results discussed in the previous section can easily be generalised to the case of non-Abelian

gauge symmetries: the Goldstone bosons associated to the broken generators are “eaten” by

the corresponding gauge field, that acquire a non-vanishing mass. What we will show in this

section is that, despite we can get rid of the Goldstone bosons in the unitary gauge, at high

energies (i.e. at energies well above the masses of the gauge fields), the amplitude for emission

or absorption of a longitudinally polarized massive gauge boson becomes equal to the amplitude

for the emission or absorption of the corresponding Goldstone boson. In other words, at high

energies we restore a system where, for each broken generator, two degrees of freedom are

associated to the transverse gauge boson and the third one is associated to the the Goldstone

boson field.

To derive this result, known as the Goldstone boson equivalence theorem, it is worth to

revisit the Goldstone boson theorem and the Higgs mechanism using a di↵erent (more general)

language. Let us first consider a Lagrangian L0 with a global non-abelian symmetry G. The

infinitesimal transformation of L0 under G is

�GL0 = @µ↵
a Ja

µ , (4.116)

and leads to a conserved current @µJ
a
µ = 0. If we promote G to become a local symmetry,

adding an appropriate set of gauge bosons (Aa
µ), the Lagrangian of the theory is modified as

follows

L0 ! L = L0 � gAa
µJ

a
µ + O(A2)| {z }

kinetic terms, . . .

(4.117)

Because of the Ward Identity of the global symmetry, we have

@µ hf | Ja
µ |ii = 0 (4.118)

where |ii and |ji represent physical on-shell states. If the symmetry is spontaneously broken,

i.e. if T a |0i 6= 0 for some generators T a of G, the current Ja
µ has the right quantum numbers to

create Goldstone bosons |⇡ki from the vacuum state. Lorentz invariance implies the following

general decomposition of the h0| Ja
µ |⇡ki matrix element:

h0| Ja
µ(x) |⇡k(p)i = �ipµF

a
k e�ip·x . (4.119)

By construction, F a
k can be non vanishing only if T a |0i 6= 0, hence a non-vanishing F a

k implies

that we have a spontaneous symmetry breaking.

To better understand the implications of (4.119), we note following two observations:
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By construction, F a
k can be non vanishing only if T a|0⟩ ≠ 0, hence a

non-vanishing F a
k implies that we have a spontaneous symmetry breaking.
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To better understand the last formula, we note following two observations:
The current conservation implies1. The current conservation implies

0 = @µ h0| Ja
µ(x) |⇡k(p)i = �ip2F a

k e�ipx . (4.120)

Hence we deduce that for an on-shell ⇡k(p) state we must have p2 = 0, which is exactly

what we expect for a Goldstone boson (i.e. ⇡k is a massless state).

2. In a scalar theory with SU(N) symmetry, where a scalar field � in a given representation

acquires a vacuum expectation value �0
i = (�0

i )
⇤, we have

Dµ�
†Dµ� � �gAa

µ(
p

2T a
kj�

0
j)

(i@µ�⇤
k � i@µ�k)p

2
= �gAa

µ(
p

2T a
ij�

0
j)(@

µ⇡k) (4.121)

where we used ��i = i✏aT a
ij�j, and re-written the field as �i = �0

i + 1p
2
(hi + i⇡i). The

above result implies

Ja
µ � (

p
2T a

ij�
0
j)(@

µ⇡k) (4.122)

which in turn allows us to deduce that F a
k =

p
2T a

ij�
0
j . Hence, as anticipated, F a

k is

non-vanishing only if T a
ij�

0
j 6= 0.

Note also that the gauge boson mass matrix can be written as m2
ab = g2F a

k F b
k , a result

that holds independently of the specific mechanism of spontaneous symmetry breaking.

After this introduction, we can prove (a simplified version) of the equivalence theorem between

Goldstone bosons and longitudinal components of the gauge bosons. The main idea can be

naively illustrated as follows

At high energies the amplitude for emission or absorption of a longitudinally polarized massive

gauge boson becomes equal to the equivalent amplitude with the gauge boson replaced by the

corresponding “eaten” Goldstone boson. Denoting Wµ the massive gauge boson, let us analyse

its polarization vectors.

W at rest: kµ = (m,~0).

By construction, in order to satisfy the conditions

(
✏µk

µ = 0

✏2 = �1
, (4.123)

a polarization vector must be a linear combination of the three orthogonal unit vectors

✏1 = (0, 1, 0, 0) , ✏2 = (0, 0, 1, 0) , ✏3 = (0, 0, 0, 1) . (4.124)
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Hence we deduce that for an on-shell πk(p) state we must have
p2 = 0, which is exactly what we expect for a Goldstone boson (i.e. πk
is a massless state).
In a scalar theory with SU(N) symmetry, where a scalar field ϕ in a
given representation acquires a vacuum expectation value ϕi0 = (ϕi0)

†,
we have
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µ(x) |⇡k(p)i = �ip2F a

k e�ipx . (4.120)

Hence we deduce that for an on-shell ⇡k(p) state we must have p2 = 0, which is exactly

what we expect for a Goldstone boson (i.e. ⇡k is a massless state).

2. In a scalar theory with SU(N) symmetry, where a scalar field � in a given representation

acquires a vacuum expectation value �0
i = (�0
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⇤, we have
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kj�
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where we used ��i = i✏aT a
ij�j, and re-written the field as �i = �0

i + 1p
2
(hi + i⇡i). The

above result implies

Ja
µ � (

p
2T a

ij�
0
j)(@

µ⇡k) (4.122)

which in turn allows us to deduce that F a
k =

p
2T a

ij�
0
j . Hence, as anticipated, F a

k is

non-vanishing only if T a
ij�

0
j 6= 0.

Note also that the gauge boson mass matrix can be written as m2
ab = g2F a

k F b
k , a result

that holds independently of the specific mechanism of spontaneous symmetry breaking.

After this introduction, we can prove (a simplified version) of the equivalence theorem between

Goldstone bosons and longitudinal components of the gauge bosons. The main idea can be

naively illustrated as follows

At high energies the amplitude for emission or absorption of a longitudinally polarized massive

gauge boson becomes equal to the equivalent amplitude with the gauge boson replaced by the

corresponding “eaten” Goldstone boson. Denoting Wµ the massive gauge boson, let us analyse

its polarization vectors.

W at rest: kµ = (m,~0).

By construction, in order to satisfy the conditions

(
✏µk

µ = 0

✏2 = �1
, (4.123)

a polarization vector must be a linear combination of the three orthogonal unit vectors

✏1 = (0, 1, 0, 0) , ✏2 = (0, 0, 1, 0) , ✏3 = (0, 0, 0, 1) . (4.124)
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In the latter result we have used δϕi = iϵaT a
ijϕj and write down the scalar

field as ϕi = ϕ0i + 1/
√
2 (hi + iπi). The above result implies

1. The current conservation implies

0 = @µ h0| Ja
µ(x) |⇡k(p)i = �ip2F a

k e�ipx . (4.120)

Hence we deduce that for an on-shell ⇡k(p) state we must have p2 = 0, which is exactly

what we expect for a Goldstone boson (i.e. ⇡k is a massless state).

2. In a scalar theory with SU(N) symmetry, where a scalar field � in a given representation

acquires a vacuum expectation value �0
i = (�0

i )
⇤, we have

Dµ�
†Dµ� � �gAa

µ(
p

2T a
kj�

0
j)

(i@µ�⇤
k � i@µ�k)p

2
= �gAa

µ(
p

2T a
ij�

0
j)(@

µ⇡k) (4.121)

where we used ��i = i✏aT a
ij�j, and re-written the field as �i = �0

i + 1p
2
(hi + i⇡i). The

above result implies

Ja
µ � (

p
2T a

ij�
0
j)(@

µ⇡k) (4.122)

which in turn allows us to deduce that F a
k =

p
2T a

ij�
0
j . Hence, as anticipated, F a

k is

non-vanishing only if T a
ij�

0
j 6= 0.

Note also that the gauge boson mass matrix can be written as m2
ab = g2F a

k F b
k , a result

that holds independently of the specific mechanism of spontaneous symmetry breaking.

After this introduction, we can prove (a simplified version) of the equivalence theorem between

Goldstone bosons and longitudinal components of the gauge bosons. The main idea can be

naively illustrated as follows

At high energies the amplitude for emission or absorption of a longitudinally polarized massive

gauge boson becomes equal to the equivalent amplitude with the gauge boson replaced by the

corresponding “eaten” Goldstone boson. Denoting Wµ the massive gauge boson, let us analyse

its polarization vectors.

W at rest: kµ = (m,~0).

By construction, in order to satisfy the conditions

(
✏µk

µ = 0

✏2 = �1
, (4.123)

a polarization vector must be a linear combination of the three orthogonal unit vectors

✏1 = (0, 1, 0, 0) , ✏2 = (0, 0, 1, 0) , ✏3 = (0, 0, 0, 1) . (4.124)
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which in turn allows us to deduce that F a
k =

√
2T a

ijϕ
0
j .

Therefore, as expected F a
k ̸= 0 if T a

ijϕ
0
j ̸= 0.

Note also that the gauge boson mass matrix can be written as
m2

ab = g2F a
kF

b
k , a result that holds independently of the specific

mechanism of spontaneous symmetry breaking.
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Now we can prove (a simplified version) of the equivalence theorem
between Goldstone bosons and longitudinal components of the gauge
bosons. The main idea can be naively illustrated as follows

1. The current conservation implies

0 = @µ h0| Ja
µ(x) |⇡k(p)i = �ip2F a

k e�ipx . (4.120)

Hence we deduce that for an on-shell ⇡k(p) state we must have p2 = 0, which is exactly

what we expect for a Goldstone boson (i.e. ⇡k is a massless state).

2. In a scalar theory with SU(N) symmetry, where a scalar field � in a given representation

acquires a vacuum expectation value �0
i = (�0

i )
⇤, we have

Dµ�
†Dµ� � �gAa

µ(
p

2T a
kj�

0
j)

(i@µ�⇤
k � i@µ�k)p

2
= �gAa

µ(
p

2T a
ij�

0
j)(@

µ⇡k) (4.121)

where we used ��i = i✏aT a
ij�j, and re-written the field as �i = �0

i + 1p
2
(hi + i⇡i). The

above result implies

Ja
µ � (

p
2T a

ij�
0
j)(@

µ⇡k) (4.122)

which in turn allows us to deduce that F a
k =

p
2T a

ij�
0
j . Hence, as anticipated, F a

k is

non-vanishing only if T a
ij�

0
j 6= 0.

Note also that the gauge boson mass matrix can be written as m2
ab = g2F a

k F b
k , a result

that holds independently of the specific mechanism of spontaneous symmetry breaking.

After this introduction, we can prove (a simplified version) of the equivalence theorem between

Goldstone bosons and longitudinal components of the gauge bosons. The main idea can be

naively illustrated as follows

At high energies the amplitude for emission or absorption of a longitudinally polarized massive

gauge boson becomes equal to the equivalent amplitude with the gauge boson replaced by the

corresponding “eaten” Goldstone boson. Denoting Wµ the massive gauge boson, let us analyse

its polarization vectors.

W at rest: kµ = (m,~0).

By construction, in order to satisfy the conditions

(
✏µk

µ = 0

✏2 = �1
, (4.123)

a polarization vector must be a linear combination of the three orthogonal unit vectors

✏1 = (0, 1, 0, 0) , ✏2 = (0, 0, 1, 0) , ✏3 = (0, 0, 0, 1) . (4.124)
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At high energies the amplitude for emission or absorption of a
longitudinally polarized massive gauge boson becomes equal to the
equivalent amplitude with the gauge boson replaced by the corresponding
“eaten” Goldstone boson.

Denoting Wµ the massive gauge boson, let us analyze its polarization
vectors.
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W at rest: kµ = (m, 0⃗)
By construction, in order to satisfy the conditions

1. The current conservation implies

0 = @µ h0| Ja
µ(x) |⇡k(p)i = �ip2F a

k e�ipx . (4.120)

Hence we deduce that for an on-shell ⇡k(p) state we must have p2 = 0, which is exactly

what we expect for a Goldstone boson (i.e. ⇡k is a massless state).

2. In a scalar theory with SU(N) symmetry, where a scalar field � in a given representation

acquires a vacuum expectation value �0
i = (�0

i )
⇤, we have

Dµ�
†Dµ� � �gAa

µ(
p

2T a
kj�

0
j)

(i@µ�⇤
k � i@µ�k)p

2
= �gAa

µ(
p

2T a
ij�

0
j)(@

µ⇡k) (4.121)

where we used ��i = i✏aT a
ij�j, and re-written the field as �i = �0

i + 1p
2
(hi + i⇡i). The

above result implies

Ja
µ � (

p
2T a

ij�
0
j)(@

µ⇡k) (4.122)

which in turn allows us to deduce that F a
k =

p
2T a

ij�
0
j . Hence, as anticipated, F a

k is

non-vanishing only if T a
ij�

0
j 6= 0.

Note also that the gauge boson mass matrix can be written as m2
ab = g2F a

k F b
k , a result

that holds independently of the specific mechanism of spontaneous symmetry breaking.

After this introduction, we can prove (a simplified version) of the equivalence theorem between

Goldstone bosons and longitudinal components of the gauge bosons. The main idea can be

naively illustrated as follows

At high energies the amplitude for emission or absorption of a longitudinally polarized massive

gauge boson becomes equal to the equivalent amplitude with the gauge boson replaced by the

corresponding “eaten” Goldstone boson. Denoting Wµ the massive gauge boson, let us analyse

its polarization vectors.

W at rest: kµ = (m,~0).

By construction, in order to satisfy the conditions

(
✏µk

µ = 0

✏2 = �1
, (4.123)

a polarization vector must be a linear combination of the three orthogonal unit vectors

✏1 = (0, 1, 0, 0) , ✏2 = (0, 0, 1, 0) , ✏3 = (0, 0, 0, 1) . (4.124)
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a polarization vector must be a linear combination of the three orthogonal
unit vectors

1. The current conservation implies

0 = @µ h0| Ja
µ(x) |⇡k(p)i = �ip2F a

k e�ipx . (4.120)

Hence we deduce that for an on-shell ⇡k(p) state we must have p2 = 0, which is exactly

what we expect for a Goldstone boson (i.e. ⇡k is a massless state).

2. In a scalar theory with SU(N) symmetry, where a scalar field � in a given representation

acquires a vacuum expectation value �0
i = (�0

i )
⇤, we have

Dµ�
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kj�

0
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(i@µ�⇤
k � i@µ�k)p
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0
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µ⇡k) (4.121)

where we used ��i = i✏aT a
ij�j, and re-written the field as �i = �0

i + 1p
2
(hi + i⇡i). The

above result implies

Ja
µ � (

p
2T a

ij�
0
j)(@

µ⇡k) (4.122)

which in turn allows us to deduce that F a
k =

p
2T a

ij�
0
j . Hence, as anticipated, F a

k is

non-vanishing only if T a
ij�

0
j 6= 0.

Note also that the gauge boson mass matrix can be written as m2
ab = g2F a

k F b
k , a result

that holds independently of the specific mechanism of spontaneous symmetry breaking.

After this introduction, we can prove (a simplified version) of the equivalence theorem between

Goldstone bosons and longitudinal components of the gauge bosons. The main idea can be

naively illustrated as follows

At high energies the amplitude for emission or absorption of a longitudinally polarized massive

gauge boson becomes equal to the equivalent amplitude with the gauge boson replaced by the

corresponding “eaten” Goldstone boson. Denoting Wµ the massive gauge boson, let us analyse

its polarization vectors.

W at rest: kµ = (m,~0).

By construction, in order to satisfy the conditions

(
✏µk

µ = 0

✏2 = �1
, (4.123)

a polarization vector must be a linear combination of the three orthogonal unit vectors

✏1 = (0, 1, 0, 0) , ✏2 = (0, 0, 1, 0) , ✏3 = (0, 0, 0, 1) . (4.124)
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W boosted along the 3rd spatial direction: kµ = (Ek, 0, 0, |⃗k|).
In order to satisfy,

1. The current conservation implies

0 = @µ h0| Ja
µ(x) |⇡k(p)i = �ip2F a

k e�ipx . (4.120)

Hence we deduce that for an on-shell ⇡k(p) state we must have p2 = 0, which is exactly

what we expect for a Goldstone boson (i.e. ⇡k is a massless state).

2. In a scalar theory with SU(N) symmetry, where a scalar field � in a given representation

acquires a vacuum expectation value �0
i = (�0

i )
⇤, we have

Dµ�
†Dµ� � �gAa

µ(
p

2T a
kj�

0
j)

(i@µ�⇤
k � i@µ�k)p

2
= �gAa

µ(
p

2T a
ij�

0
j)(@

µ⇡k) (4.121)

where we used ��i = i✏aT a
ij�j, and re-written the field as �i = �0

i + 1p
2
(hi + i⇡i). The

above result implies

Ja
µ � (

p
2T a

ij�
0
j)(@

µ⇡k) (4.122)

which in turn allows us to deduce that F a
k =

p
2T a

ij�
0
j . Hence, as anticipated, F a

k is

non-vanishing only if T a
ij�

0
j 6= 0.

Note also that the gauge boson mass matrix can be written as m2
ab = g2F a

k F b
k , a result

that holds independently of the specific mechanism of spontaneous symmetry breaking.

After this introduction, we can prove (a simplified version) of the equivalence theorem between

Goldstone bosons and longitudinal components of the gauge bosons. The main idea can be

naively illustrated as follows

At high energies the amplitude for emission or absorption of a longitudinally polarized massive

gauge boson becomes equal to the equivalent amplitude with the gauge boson replaced by the

corresponding “eaten” Goldstone boson. Denoting Wµ the massive gauge boson, let us analyse

its polarization vectors.

W at rest: kµ = (m,~0).

By construction, in order to satisfy the conditions

(
✏µk

µ = 0

✏2 = �1
, (4.123)

a polarization vector must be a linear combination of the three orthogonal unit vectors

✏1 = (0, 1, 0, 0) , ✏2 = (0, 0, 1, 0) , ✏3 = (0, 0, 0, 1) . (4.124)
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the transverse polarizations are given by ϵ1 and ϵ2, while the longitudinal
polarization vector is given by

W boosted along the 3rd spatial direction: kµ = (Ek, 0, 0, |~k|).
Here, in order to satisfy, the conditions (4.123), the transverse polarizations are given by

✏1 and ✏2, while the longitudinal polarization vector is given by

✏µL(k) =

✓
|~k|
m

, 0, 0,
Ek

m

◆
(4.125)

We thus deduce that at large momentum (Ek ⇠ |~k| � m)

✏µL ⇠ kµ

m
(4.126)

namely ✏µL becomes increasingly parallel to kµ as k becomes large.

Let us now consider a generic matrix element of the conserved current Ja
µ , and impose the

current conservation in momentum space:

kµ hf | Ja
µ |ii = 0 . (4.127)

Diagrammatically, this implies

0 = kµ

 k

...

!
= kµ

 
1SA ...

+ 1SA
�

...

!
(4.128)

or, more explicitly,

kµ


�(W )

µ (k) + igFkµ
i

k2
�(GB)(k)

�
= 0 , (4.129)

where �
(W )
µ (k) denotes the one-particle irreducible diagram with the emission of a massive gauge

boson of momentum k, while �(GB)(k) the one with the corresponding Goldstone boson. Since

mW = gF , we deduce that

kµ�(W )
µ (k) = mW�(GB)(k) . (4.130)

Given (4.126) in the high-energy limit we obtain

✏µL(k)�(W )
µ (k) = �(GB)(k) , (4.131)

that completes our proof: at high energies, the contribution to physical amplitudes of the lon-

gitudinal polarization of a massive gauge boson, from a spontaneously broken gauge symmetry,

is equivalent to that of the corresponding Goldstone boson.

An example: the top quark decay in the Standard Model

Within the Standard Model (SM), quark masses, as well as the masses of the weak gauge

bosons, are the result of the spontaneous symmetry breaking of a (complex) scalar field H (the

Higgs field) transforming as a doublet of the SU(2)L gauge symmetry. The key ingredients
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At large momentum (Ek ∼ |⃗k| ≫ m)

ϵµL(k) ∼
kµ

m

that is ϵµL becomes ∥ to kµ.
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Now consider a generic matrix element of the conserved current Ja
µ , and

impose the current conservation in momentum space:

W boosted along the 3rd spatial direction: kµ = (Ek, 0, 0, |~k|).
Here, in order to satisfy, the conditions (4.123), the transverse polarizations are given by

✏1 and ✏2, while the longitudinal polarization vector is given by

✏µL(k) =
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m

◆
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= 0 , (4.129)

where �
(W )
µ (k) denotes the one-particle irreducible diagram with the emission of a massive gauge

boson of momentum k, while �(GB)(k) the one with the corresponding Goldstone boson. Since

mW = gF , we deduce that

kµ�(W )
µ (k) = mW�(GB)(k) . (4.130)

Given (4.126) in the high-energy limit we obtain

✏µL(k)�(W )
µ (k) = �(GB)(k) , (4.131)

that completes our proof: at high energies, the contribution to physical amplitudes of the lon-

gitudinal polarization of a massive gauge boson, from a spontaneously broken gauge symmetry,

is equivalent to that of the corresponding Goldstone boson.

An example: the top quark decay in the Standard Model

Within the Standard Model (SM), quark masses, as well as the masses of the weak gauge

bosons, are the result of the spontaneous symmetry breaking of a (complex) scalar field H (the

Higgs field) transforming as a doublet of the SU(2)L gauge symmetry. The key ingredients
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Diagrammatically, it means

W boosted along the 3rd spatial direction: kµ = (Ek, 0, 0, |~k|).
Here, in order to satisfy, the conditions (4.123), the transverse polarizations are given by

✏1 and ✏2, while the longitudinal polarization vector is given by

✏µL(k) =

✓
|~k|
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We thus deduce that at large momentum (Ek ⇠ |~k| � m)
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namely ✏µL becomes increasingly parallel to kµ as k becomes large.

Let us now consider a generic matrix element of the conserved current Ja
µ , and impose the

current conservation in momentum space:
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that completes our proof: at high energies, the contribution to physical amplitudes of the lon-
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is equivalent to that of the corresponding Goldstone boson.
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The Goldstone boson equivalence theorem

Namely, at high energies, the contribution to physical amplitudes of the
longitudinal polarization of a massive gauge boson, from a spontaneously
broken gauge symmetry, is equivalent to that of the corresponding
Goldstone boson.

Let’s consider the following example: the top quark decay in the
Standard Model.

Within the Standard Model (SM), quark masses, as well as the masses of
the weak gauge bosons, are the result of the spontaneous symmetry
breaking of a (complex) scalar field H (the Higgs field) transforming as a
doublet of the SU(2)L gauge symmetry.
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The Goldstone boson equivalence theorem

The key ingredients to describe the decay of the t quark into a W and a b
quark are the following terms in the Lagrangian
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Figure 4.2: Tree-level diagrams for the decay of the top-quark within the SM

to describe the decay of the t quark into a W and a b quark are the following terms in the

Lagrangian:

�Lt�W = q̄L(i/D)qL � t̄L�
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µ + h.c., qL =

✓
tL
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◆
, (4.132)

�Ltop�Yukawa = ytq̄L(i�2H
⇤)tR + h.c

hHi�! ytvp
2

(t̄LtR + h.c.) + . . . (4.133)

�LW�mass = (DµH)†DµH
hHi�! g2v2

4
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µ W+
µ + . . . (4.134)

The terms indicated with an arrow are those obtained replacing the Higgs field with its vacuum

expectation value
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From those we deduce that mt = ytv/
p

2 and m2
W = g2v2/4.

The tree-level diagram describing the decay of the t quark into a W+ and a b quark (which

we can treat as massless, in first approximation), in shown in Fig. 4.2 (left). Computing

this diagram in the unitary gauge we obtain the complete result at O(g). The corresponding

amplitude is

iM =
igp
2
ū(q)�µPLu(p)✏⇤µ(k) . (4.136)

Squaring M, averaging over all the possible W polarizations, and summing over final spins,

leads to
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X

polariz.

✏⇤µ(k)✏⌫(k)

=
g2

2
[qµp⌫ + q⌫pµ � gµ⌫q · p]


�gµ⌫ +

kµk⌫
m2

W

�

=
g2

2


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Taking into account the decay kinematics, this leads to

1
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X
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|M|2 = g2 m4
t

4m2
W
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1 + O
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W

m2
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(4.138)
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The tree-level diagram describing the decay of the t quark into a W+ and a b quark (which
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amplitude is

iM =
igp
2
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The Goldstone boson equivalence theorem

From those we deduce that mt = ytv/
√
2 and m2

W = g2v2/4.

The tree-level diagram describing the decay of the t quark into a W+ and
a b quark (which we can treat as massless, in first approximation), is
described by the following diagrams
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Figure 4.2: Tree-level diagrams for the decay of the top-quark within the SM
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From those we deduce that mt = ytv/
p

2 and m2
W = g2v2/4.

The tree-level diagram describing the decay of the t quark into a W+ and a b quark (which

we can treat as massless, in first approximation), in shown in Fig. 4.2 (left). Computing

this diagram in the unitary gauge we obtain the complete result at O(g). The corresponding
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Computing this diagram in the unitary gauge we obtain the complete result
at O(g). The corresponding amplitude is
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Figure 4.2: Tree-level diagrams for the decay of the top-quark within the SM
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From those we deduce that mt = ytv/
p

2 and m2
W = g2v2/4.

The tree-level diagram describing the decay of the t quark into a W+ and a b quark (which

we can treat as massless, in first approximation), in shown in Fig. 4.2 (left). Computing
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The Goldstone boson equivalence theorem

Squaring M, averaging over all the possible W polarizations, and summing
over final spins, leads to
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Figure 4.2: Tree-level diagrams for the decay of the top-quark within the SM
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Naively, this result seems to imply that the decay width of the t quark diverges in the limit

mW ! 0; however, this is clearly an artefact since mW / g.

To better understand what happens in the limit mt � mW we can make use of the Goldstone

boson equivalence theorem. In this limit the W is highly boosted and the contribution to the

amplitude is dominated by the decay into a longitudinally polarised W , with amplitude

iML =
igp
2
ū(q)�µPLu(p)

kµ

mW

=
igp
2
ū(q)(/p � /q)PLu(p)

1

mW

=
igp
2

mt
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ū(q)PLu(p) = i

 p
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v
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ū(q)PLu(p) . (4.140)

Since yt =
p

2mt/v, it is easy to realise that

iML = iytū(q)PLu(p) = iMGB (4.141)

where MGB is the amplitude for the decay to a Goldstone boson, in absence of gauging of the

symmetry, as expected by the Goldstone boson equivalence theorem.

In this specific process we can understand this phenomenon also noting that mt � mW

necessarily imply yy � g. Hence we can “switch-o↵” gauge interactions and analyse the

process in the limit g ! 0. In such limit there is no W , and the t quark decay via t ! b�+,

corresponding to the diagram in Fig. 4.2 (right). The corresponding decay width is

�(t ! bW+)0 = y2
t

mt

32⇡
(4.142)

which is nothing but the the leading term in Eq. (4.139) for mt � mW . Note that this result

is completely independent from g and mW .
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Naively, this result seems to imply that the decay width of the t quark
diverges in the limit mW → 0; however, this is clearly an artefact since
mW ∝ g.

SSB in QFT /Lecture Example 51 / 53



The Goldstone boson equivalence theorem

To better understand what happens in the limit mt ≫ mW we can make
use of the Goldstone boson equivalence theorem. In this limit the W is
highly boosted and the contribution to the amplitude is dominated by the
decay into a longitudinally polarized W , with amplitude

that implies

�(t ! bW+)SM =
g2

64⇡

m3
t

m2
W


1 + O

✓
m2

W

m2
t

◆�
. (4.139)

Naively, this result seems to imply that the decay width of the t quark diverges in the limit

mW ! 0; however, this is clearly an artefact since mW / g.

To better understand what happens in the limit mt � mW we can make use of the Goldstone

boson equivalence theorem. In this limit the W is highly boosted and the contribution to the

amplitude is dominated by the decay into a longitudinally polarised W , with amplitude

iML =
igp
2
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iML = iytū(q)PLu(p) = iMGB (4.141)

where MGB is the amplitude for the decay to a Goldstone boson, in absence of gauging of the

symmetry, as expected by the Goldstone boson equivalence theorem.

In this specific process we can understand this phenomenon also noting that mt � mW

necessarily imply yy � g. Hence we can “switch-o↵” gauge interactions and analyse the

process in the limit g ! 0. In such limit there is no W , and the t quark decay via t ! b�+,

corresponding to the diagram in Fig. 4.2 (right). The corresponding decay width is

�(t ! bW+)0 = y2
t

mt

32⇡
(4.142)

which is nothing but the the leading term in Eq. (4.139) for mt � mW . Note that this result

is completely independent from g and mW .

99

that implies

�(t ! bW+)SM =
g2

64⇡

m3
t

m2
W


1 + O

✓
m2

W

m2
t

◆�
. (4.139)

Naively, this result seems to imply that the decay width of the t quark diverges in the limit

mW ! 0; however, this is clearly an artefact since mW / g.

To better understand what happens in the limit mt � mW we can make use of the Goldstone

boson equivalence theorem. In this limit the W is highly boosted and the contribution to the

amplitude is dominated by the decay into a longitudinally polarised W , with amplitude

iML =
igp
2
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iML = iytū(q)PLu(p) = iMGB (4.141)

where MGB is the amplitude for the decay to a Goldstone boson, in absence of gauging of the

symmetry, as expected by the Goldstone boson equivalence theorem.

In this specific process we can understand this phenomenon also noting that mt � mW

necessarily imply yy � g. Hence we can “switch-o↵” gauge interactions and analyse the

process in the limit g ! 0. In such limit there is no W , and the t quark decay via t ! b�+,

corresponding to the diagram in Fig. 4.2 (right). The corresponding decay width is

�(t ! bW+)0 = y2
t

mt

32⇡
(4.142)

which is nothing but the the leading term in Eq. (4.139) for mt � mW . Note that this result

is completely independent from g and mW .

99

MGB is the amplitude for the decay to a Goldstone boson, in absence of
gauging of the symmetry, as expected by the Goldstone boson equivalence
theorem.
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In this specific process we can understand this phenomenon also noting
that mt ≫ mW necessarily imply yt ≫ g. Hence we can “switch-off” gauge
interactions and analyze the process in the limit g → 0. In such limit there
is no W , and the t quark decay via t→ b+, corresponding to the diagram
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mW ! 0; however, this is clearly an artefact since mW / g.
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where MGB is the amplitude for the decay to a Goldstone boson, in absence of gauging of the

symmetry, as expected by the Goldstone boson equivalence theorem.
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necessarily imply yy � g. Hence we can “switch-o↵” gauge interactions and analyse the
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corresponding to the diagram in Fig. 4.2 (right). The corresponding decay width is
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which is nothing but the the leading term in Eq. (4.139) for mt � mW . Note that this result

is completely independent from g and mW .
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and this is the leading term in the previously obtained decay when
mt ≫ mW . (No g and mW dependence!)
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