

Workshop on the Use of EB for Sewage Sludge Treatment in the Developing World

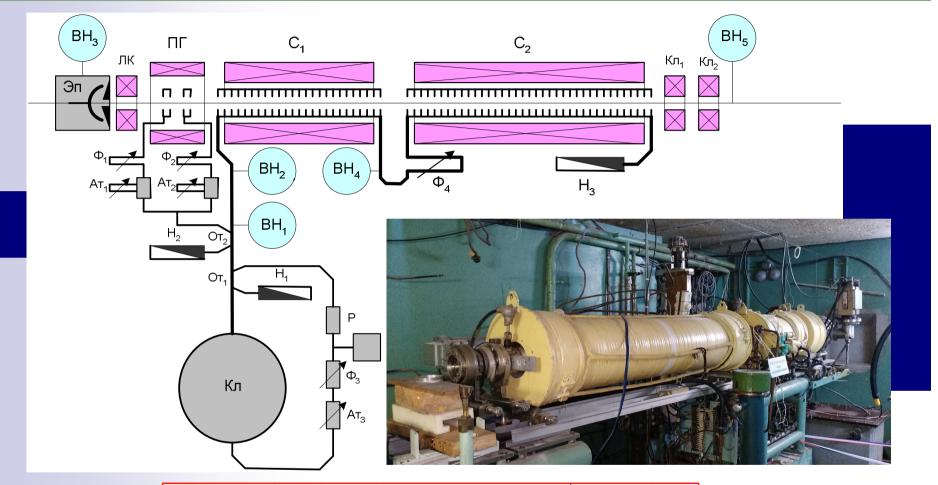
About NSC KIPT NASU

Te pu sol G.I en fis lar of V.I wo	chnology), being one of oldest and largest center rpose of developing urgent lines of research (at t The distinctive properties of the Institute were a lving the problems with a practical orientation of On October 10, 1932, an outstanding result was D.Latyshev, namely, the nucleus of lithium atom v In post-war years the KIPT was one of the active ergy in the USSR. Systematic measurements of co sile and structural materials have been performed In 60-70th many unique experimental facilities: rgest USSR electron linear accelerator, a family of From 1972 still the end 1991 the Institute execu radiation materials science and radiation technol The world-known are the schools of academician E.Ivanov, B.G.Lazarev, A.I.Akhiezer, Ya.B.Fainber In 1993 the Institute was given the status of the Nearly 300 Candidates and 80 Doctors of Science	received by A.K.Valter, K.D.Sinelnikov, A.I.Lejpunsky, was caused to undergo fission. ve participants working on the problem of use of atomic onstants of neutron and other particle interactions with d. a number of electron and ion accelerators, including the f thermonuclear installations "Uragan", were constructed. ited functions of a main organization in the USSR in the field logies. hs L.D.Landau, K.D.Sinelnikov, A.K.Valter, I.M.Lifshits, rg, D.V.Volkov. e first in Ukraine National Science Center (the NSC KIPT). es, 7 Members of National Academy of Sciences of Ukraine of State and Nominal Prizes. From 1981 more than 60	e
	NSC KIPT structure	The basic lines of research work	
	Institute of Solid-State Physics, Materials Science and Technologies	Solid-state Physics. Physics of radiation effects and radiation materials science. Materials Technologies	
	Institute of High-Energy Physics and Nuclear Physics	Nuclear physics, physics of electromagnetic interactions, physics and engineering of electron accelerators.	
	Institute of Plasma Electronics and New Methods of Acceleration	Plasma electronics and physics of high-current beams. Physics and engineering of heavy charged particle accelerators. New methods of acceleration.	
	Institute of Plasma Physics	Plasma Physics and controlled fusion	1
	Akhiezer Institute for Theoretical Physics	Theoretical physics]

Detail information about NSC KIPT is presented on website https://www.kipt.kharkov.ua/en/

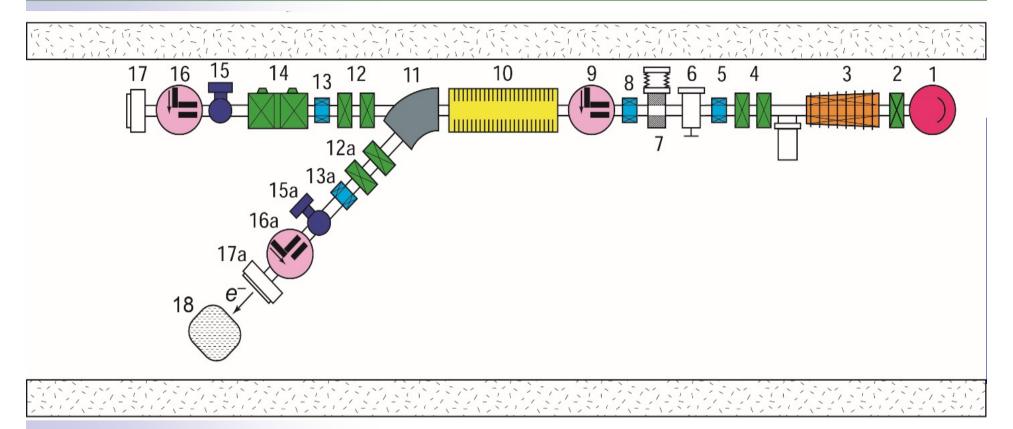
A.K. Valter (1905-1965) Academician of Academy of Science of USSR

He directed and took direct part in the construction of a number of accelerators, in particular:


-2.5 MeV Van de Graaff electrostatic horizontal type ion accelerator (1935-36),

- 1.8 GeV electron linear accelerator(1968).

He was a scientific superviser of all experiments in nuclear physics and physics of elementary particles. In 1946 he founded the Department of Experimental Nuclear Physics at the Kharkiv State University.


Developing of Electron Linear Accelerator in the KIPT					
Hist	ory		New history		
1953 LUE-0.7		1991	LUE-60	For SSR-600	
1954 LUE-3.5		1992	LIC	Laser initiation	
1956 LUE-30		1993	KUT-1	For sterilization	
1958 LUE-90		1993	LUE-10	Modernization	
1963 LUE-300	1975-1987	1996	EPOC		
1964 LUE-40	UIC	2002	KUT-20	For isotope production	
1965 LUE-2000	1985	2004	LUE-100		
1987 LUE-10		2007	KUT-20 KUT-30	Modernization	
		2008	LUE-60M	NESTOR	

UIC - 10 MeV Electron Linear Accelerator of IHEPNP

Energy, MeV	10
Current-pulse width, µs	2
Average current, μA	200
Energy spread, %	5-10
Max irradiation dose	~2kGy/s

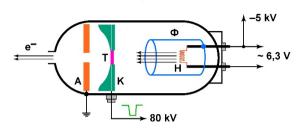
30 MeV Electron Linear Accelerators of IHEPNP

Schematic view of 30 MeV Electron linear Accelerator with output devises:

1 – Electron gun

- 2, 14 Magnetic lenses
- 3, 10 Acceleration sections
- 4, 12, 12a Quadruple lenses
- 5,8, 13,13a Correctors
- 5 Automatic valve

- 6 Collimator
- 9, 16, 16a Faraday cups
- 11 Magnetic energy analyzer
- 15, 15A Beam current monitors
- 17, 17a Electron beam output


windows

18 – Target for irradiation

30 MeV Electron Linear Accelerators of IHEPNP

Main parameters				
Energy, MeV	6 -30			
Current-pulse width, μs	2			
Average current direct beam line, µA	80			
Average current 60⁰ beam line, μA	55			
Energy spread, %	1.5-5			
Max irradiation dose,	~800Gy/s			

Electron gun schematic view

De	etail information about LUE-30			
1. Main parameters				
Beam energy	6-30 MeV			
Average beam current	2-80 μA			
Repetition rates: Klystron modulator Electron gun modulator	50, 100 Hz 3, 6, 12, 25, 50, 100 Hz			
Current-pulse width	2 µs			
Beam dimensions: Direct beamline 60 ⁰ beamline	3-10 mm 6-15 mm			
2. Electron gun				
Acceleration voltage	5 kV			
Electron beam current	0.1 µA			
Anode voltage	80 kV			
Cathode material	LaB ₆			
Cathode diameter	16 mm			
3. Acceleration system				
Sections	2			
Length of first section	445 mm			
Length of second section	4.44 m			
Electron group velocity	0.038			
Electron energy after 1 section	5 MeV			
RF power of Klystron generator	20 MWatt			
Frequency	2797.2 MHz			
Klystron type	KIU-12AM			

Electron Linear Accelerators of <u>"Accelerator" Science and Research Establishment</u>

Accelerator KUT-1

Year	1993
Energy, MeV	9
Number of sections	1
Current-pulse width, µs	4
Repetition rate, pps	300
Average current, µA	800

Max irradiation dose, kGy/s

~8

Accelerator LUE-10

Year (update)	1993
Energy, MeV	9-12
Number of sections	1
Current-pulse width, µs	4
Repetition rate, pps	300
Average current, µA	1000

Max irradiation dose, kGy/s

~10

Impotence of Sewage Sludge Problem

¹In Ukraine, during the cleaning of household and industrial sewage, a large amount of sediment is formed which is an environmentally hazardous waste because it contains heavy metals whose concentrations exceed the normative parameters of DSTU 7369: 2013 and is characterized by high bacterial and parasitic contamination.

An ecologically dangerous sewage sludge (SS) created at biological treatment plants is introduced for further dewatering and decontamination on mud grounds.

Today in Ukraine, about 1 billion tons of sediment have been accumulated on the sludge sites. More than 10 thousand hectares of land have been seized for their placement (more than 300 hectares in Kharkiv region). Most sediment are today overcrowded and are environmentally hazardous objects, as they pollute the atmosphere, soils, surface and groundwater.

Promising and environmentally safe is the utilization of SS by recycling them into organomineral mixtures, which can be used as fertilizers in agriculture. This applies to SS that do not contain excess heavy metals. However, such sediments are contaminated with pathogenic microflora and eggs of worms, and require preliminary disinfection.

Improvement of effective, ecological and affordable methods of intensifying the decontamination of sediments of biological treatment plants stored at sludge sites and developing technologies for their further utilization into an environmentally safe organomineral mixtures for fertilizers in agriculture is relevant.

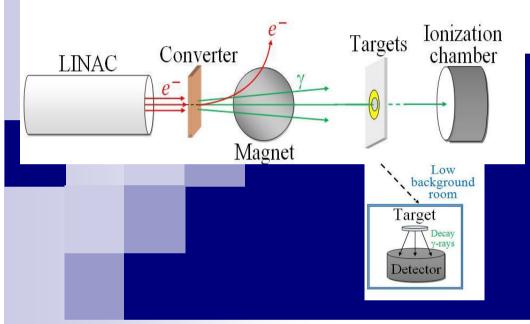
Necessary to develop a new more effective technology for Sewage Sludge Treatment! Determination of heavy elements² with high accuracy is needed!

1 -By Fomina I.G. - Increase of ecological safety by utilization of sediments of biological treatment facilities (on the example of the Kharkov area). -Manuscript. Dissertation for a Candidate Degree in Technical Sciences, Scientific Research Institute «Ukrainian Scientific Research Institute of Ecological problems» and V. N. Karazin Kharkiv National University. - Kharkiv, 2015.

2 - SEGEBADE, Chr; WEISE, Hans-Peter. Comparison of sensitivity estimates for low energy photon and

classical gamma-ray spectroscopy applied to photon activation analysis. Journal of Radioanalytical Chemistry, 1978, 45.1: 209-220.

National Standard of Ukraine DSTU 7369:2013

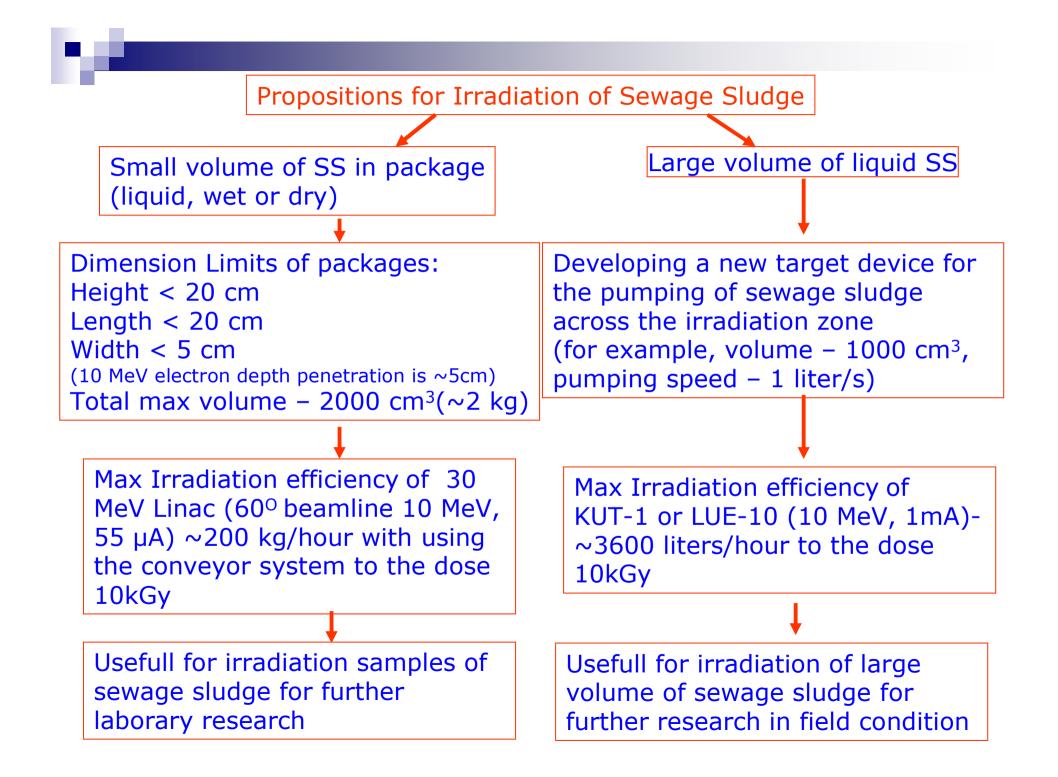

Waste Water: Requirements for waste water and its sediments for irrigation and fertilization

This standard establishes the basic requirements for sewage and sediment used for irrigation and fertilization. It applies to waste water from cities (mixtures of household, industrial, atmospheric, and also near to them in the composition of industrial waste water) and sediments that are formed in the process of urban wastewater treatment, and products of their processing (fertilizers) on the basis of sediments.

Element	Value MPC, μg/kg		Value of background content, μ g/kg		
	forest-steppe zone (pH<7)	steppe zone (pH>7)	Average content	Regular content in soil	
Sr	50-70				
Hg	2-5				
Cd	3	5	0.5	0.01-1	
Pb	100	150	10	0.1-20	
Cr	100	300	200	2-50	
Zn	300	500	50	3-50	
Cu	100	200	20	1-200	
Mn	1500	3000	850	-	
Ni	50	70	40	2-50	
Co	30	50	8	1-10	
Мо	4	5	3	0.2-5	

Application of Photoactivation Analysis for Heavy and Light Elements Determination

General Scheme of experiment



View of 60⁰ beamline

LINAC	Linear electron accelerator up to 30 MeV
Convertor	Tantalum 100 µm
Magnet	Beam Deflection magnet
Targets	Dry Sewage Sludge pressed into cup holder
Ionization chamber	Used as a monitor for registration bremsstrahlung flux behind targets
Detector	HP(Ge) detector Canberra

Opportunities of Photoactivation Analysis Application for Heavy and Light Elements Determination

Element	Abundance,%	Reaction	T1/2	Eγ, keV	Detection limit µg/g
Sr	⁸⁸ Sr-82.58 ⁸⁶ Sr-9.86 ⁸⁴ Sr-0.56	⁸⁸ Sr(γ,n) ^{87m} Sr ⁸⁶ Sr(γ,n) ^{85m} Sr ⁸⁴ Sr(γ,n) ⁸⁸³ Sr	2.81h 67.7m 33h	388 232 381	0.02 0.3 30
Hg	¹⁹⁸ Hg-9.97	¹⁹⁸ Hg(γ,n) ^{197m} Hg	23.8h	134	1
Cd	¹¹⁶ Cd-7.49	¹¹⁶ Cd(γ,n) ¹¹⁵ Cd	53.5h	528	1
Pb	²⁰⁴ Pb-1.4	²⁰⁴ Pb(γ,n) ²⁰³ Pb	52.1h	279	1
Cr	⁵² Cr-83.78	⁵² Cr(γ,n) ⁵¹ Cr	27.8d	320	3
Zn	⁶⁸ Zn-18.45	⁶⁸ Ζ(γ,p) ⁶⁷ Cu	61.9h	185	1
Cu	⁶⁵ Cu-30.85 ⁶³ Cu-69.15	⁶⁵ Cu(γ,n) ⁶⁴ Cu ⁶³ Cu(γ,2n) ⁶¹ Cu	12.8h 3.3h	1346 283	36 2
Mn	⁵⁵ Mn-100	⁵⁵ Mn(n,γ) ⁵⁶ Mn ⁵⁵ Mn(γ,n) ⁵⁴ Mn	2.58h 312.5d	847 835	4 15
Ni	⁵⁸ Ni-66.07	⁵⁸ Ni(γ,n) ⁵⁷ Ni	36h	1378	0.5
Co	⁵⁹ Co-100	⁵⁹ Co(γ,n) ⁵⁸ Co	70.78d	811	2
Мо	¹⁰⁰ Mo-9.82 ⁹⁴ Mo-9.15	¹⁰⁰ Mo(γ,n) ⁹⁹ Mo ⁹⁹ Mo→ ⁹⁹ mTc ⁹⁴ MO(γ,n) ^{93m} Mo	66.2h 6h 6.95h	140 263	0.2 0.8
N	¹⁴ N-99.63	¹⁴ N(γ,n) ¹³ N	10 min	511	0.02
С	¹² C-98.93	¹² C(γ,n) ¹¹ C	20.3 min	511	0.1
Р	³¹ P-10 0	³¹ Ρ(γ,n) ³⁰ Ρ	2.5m	511	40
0	¹⁶ O-99.75	¹⁶ Ο(γ,n) ¹⁵ Ο	2m	511	0.05
F	¹⁹ F-100	¹⁹ F(γ,n) ¹⁸ F	110 min	511	0.001

Thank you for your attention!